
UFTP messages for flex trading at GOPACS

Last updated: 28-4-2025

GOPACS supports flex trading with Capacity Limiting Contracts (CBCs, capaciteitsbeperkingscontracten) and alternative non-firm

transport rights such as TDTR/NFA through the exchange of Shapeshifter UFTP messages.

The implementation must be compliant to the Shapeshifter UFTP specification version 3.0.0 (for TDTR, 3.1.0 is required), with some

restrictions which are described separately in this document.

Table of contents

CLC message flow

TDTR/NFA message flow

Message broker

Open source library

GOPACS environments

Getting started
Account Setup for the GOPACS Application

Set up an API client

Enter your company details for UFTP and OAuth2.0

Obtaining a Bearer token

Implement UFTP endpoint

Participant API ('Address book')
Search on EAN and UFTP Role

Search on Domain Name and UFTP Role

GOPACS on behalf of a Grid Company or Trading Company

ISPs

Baseline

SignedMessage

Message types with examples and field specifications
FlexRequest

FlexRequestResponse

FlexOffer

FlexOfferResponse

FlexOrder (for CLC)

FlexOrder (for TDTR)

FlexOrderResponse

TestMessage & TestMessageResponse

Other message types

GOPACS implementation specifics

CLC message flow
This requires minimum version 3.0.0, but some improvements are made in 3.1.0. Implementations should adopt version 3.1.0 as soon as possible.

Overview of the GOPACS and UFTP message exchange for CLC contracts. The part where the URL and the public key is retrieved, is

GOPACS specific.

https://github.com/shapeshifter/shapeshifter-specification

Currently, a CLC call (CBC-afroep) uses the following message flow:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexRequest message is sent by the grid operator to the trading company, requesting a certain amount of flexibility.

3. FlexRequestResponse message is sent by the grid operator to the trading company, acknowledging the receival of the request.

4. Trading company determines what flexibility is available.

5. FlexOffer message is sent by the trading company to the grid operator, indicating what flexibility is available.

6. FlexOfferResponse message is sent by the grid operator to the trading company, acknowledging the receival of the offer.

7. Grid operator recalculates and chooses which flexibility to procure.

8. FlexOrder message is sent by the grid operator to the trading company, to procure the flexibility.

9. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.

10. The call (afroep) is now completed.

For a readable version of the above diagram, please check the support documents sections.

TDTR/NFA message flow
This requires version 3.1.0.

Currently, a call (afroep) of TDTR/NFA contracts uses the following message flow:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexOrder message is sent by the grid operator to the trading company, to procure the flexibility.

3. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.

4. The call (afroep) is now completed.

There is no negotiation phase where a FlexRequest and FlexOffer are exchanged.

Message broker
The UFTP protocol allows direct communication between grid operators and trading companies. However, for the sake of monitoring and

reporting, UFTP messages should be communicated via the GOPACS UFTP Message Broker. The message broker will forward the

messages to the specified UFTP recipient.

Open source library
To aid in building a compliant implementation GOPACS has built an open source library: https://github.com/shapeshifter/shapeshifter-

library

https://edsn.atlassian.net/wiki/spaces/GOPACS/pages/1418985574
https://github.com/shapeshifter/shapeshifter-library
https://github.com/shapeshifter/shapeshifter-library

When implementing the protocol, make sure the implementation is compliant to the GOPACS specifications as described in this document.

All UFTP traffic must be uniform in order to make sure that every participant is able to communicate with each other.

GOPACS uses (in this documentation) the term Trading Company for every participant that has a contract with the Grid Company. In the

UFTP specification the term AGR (aggregator) is used, and in some Capacity Limit Contracts the term CSP is used.

GOPACS environments

Getting started

Account Setup for the GOPACS Application

For New CSPs or Affiliates

If you are a new CSP or affiliate (aangeslotene), you can create an account yourself if you don't already have one. Please note that each

environment requires a separate account—accounts are not shared across environments.

After completing the sign-up form and accepting the terms, your request will be sent to a grid operator for approval. Once approved, you

will receive an email with instructions to finalize your account setup. Only then will you be able to log in to the GOPACS application.

GOPACS UI https://app.acc.gopacs.eu https://app.gopacs.eu

UFTP endpoint

This is where you send

your messages to

https://clc-message-broker.acc.gopacs-

services.eu/shapeshifter/api/v3/message

https://clc-message-broker.gopacs-

services.eu/shapeshifter/api/v3/message

Participant API (address

book)

https://clc-message-broker.acc.gopacs-

services.eu/v2/participants/

https://clc-message-broker.gopacs-

services.eu/v2/participants/

API documentation Swagger UI Swagger UI

UFTP Public Key

This is the public key that

can be used to verify

messages sent from

GOPACS UI on behalf of a

DSO/CSP not having their

own implementation.

VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E

+c=

pI/s07d9fvoatyo5gVLZKLfdqQmdkaMAIgConmcl76U

=

Public IPs of GOPACS

(for IP whitelisting)

3.75.32.104

3.77.164.86

35.158.231.79

3.121.132.49

3.76.130.111

3.78.82.175

Sign-up link for new
CSPs

Sign-up for GOPACS Sign-up for GOPACS

OAuth2 token endpoint https://auth.acc.gopacs-

services.eu/realms/gopacs/protocol/openid-

connect/token

https://auth.gopacs-

services.eu/realms/gopacs/protocol/openid-

connect/token

Environment ACC (suggested for testing integrations) PRD

https://app.acc.gopacs.eu/
https://app.gopacs.eu/
https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://app.acc.gopacs.eu/signup
https://app.gopacs.eu/signup
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token

Set up an API client
After signing up to GOPACS, you need to create at least one API client to authenticate your company on API requests:

1. Log in to the GOPACS GUI as company admin

2. Navigate to ‘API clients’

3. Create a new API client

4. Store the client ID and client secret somewhere secure (e.g. secrets manager software). Note that the client secret cannot be viewed

again.

Enter your company details for UFTP and OAuth2.0
Add your company details for UFTP communication and OAuth2.0 on the “My company details” / “Mijn bedrijfsgegevens” page, on the

“UFTP” tab.

UFTP details

UFTP domain (mandatory)

UFTP endpoint (mandatory, must be https)

UFTP public key (mandatory)

These details will be your “Participant information” that other companies will retrieve from the GOPACS Participant endpoint to send UFTP

requests to your company (see next paragraph “Participant API”)

OAuth2.0

UFTP requests to the GOPACS endpoint must include an OAuth2 Bearer token in the Authorization header of each HTTP request. See

next paragraph on “Obtaining a Bearer token”

 For receiving UFTP requests, using OAuth2.0 is optional. After selecting the optional checkbox to use OAuth2.0 for receiving UFTP

requests, the following fields appear:

Token URL (mandatory)

Scope (optional, space separated list - scopes that your own authentication provider requires)

Client Id (mandatory - from set up API client in the previous paragraph)

Client secret (mandatory - from set up API client in the previous paragraph)

Obtaining a Bearer token
Use the OAuth2 client credentials flow to obtain a Bearer token:

1. Configure an OAuth2 client to use the GOPACS OAuth2 token endpoint (see the table above)

2. Configure the client ID and client secret of the API client created via the GOPACS GUI

3. Perform the OAuth2 client credentials flow

4. A Bearer token will be returned (access token) which will be valid for a limited time (usually 5 minutes)

5. Include the Bearer token in each HTTP request to the GOPACS API

6. Refresh the Bearer token in time by performing the same flow again

https://oauth.net/2/bearer-tokens/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://oauth.net/2/grant-types/client-credentials/

Implement UFTP endpoint
As a Trading Company you need to have an implementation of the UFTP protocol for sending and receiving messages to and from grid

operators. To receive UFTP messages you need to expose an endpoint compliant to the Shapeshifter UFTP specification, that is ready to

accept UFTP messages from GOPACS.

Participant API ('Address book')
DNS discovery as described in the UFTP specification is currently not supported by GOPACS.

GOPACS provides an alternative API for discovery of UFTP participant information: the Participant API.

There are currently two endpoints for the discovery of UFTP Participant information; 1) Search on EAN and UFTP Role and 2) Search on

Domain Name and UFTP Role

Search on EAN and UFTP Role
You can retrieve the participant information by searching on the EAN of the contracted grid connection and the UFTP role of the participant

(DSO or AGR). As there may be multiple trading companies/aggregators on one grid connection, the response is a list of participants.

Example Participant API request:

Example Participant API response:

NB! Since we actively encourage to let all UFTP message go through the CLC Message Broker for reporting purposes, the returned

participant ‘endpoint’ is always the CLC Message Broker endpoint.

Response Status

Search on Domain Name and UFTP Role
This is typically used to verify and decrypt the payload when receiving a message.

NB. It is also possible to make use of the GOPACS UI to send and receive UFTP Flex messages.

1 GET /v2/participants/DSO?contractedEan=123456789012345678 HTTP/1.1
2 Accept: application/json

1 HTTP/1.1 200 OK
2 Content-Type: application/json
3
4 [
5 {
6 "domain": "example.com",
7 "publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E+c=",
8 "endpoint": "https://clc-message-broker.gopacs-services.eu/shapeshifter/api/v3/message"
9 }
10]

200 ok (note: if no participants could be found, an empty list is returned with HTTP Status 200)

400 EAN is not 18 characters wide, or uftpRole is not AGR or DSO (CRO is not supported)

HTTP status Possible cause

GOPACS also provides a v1/participants endpoint, but this API endpoint has been marked as deprecated, and will be removed in a

future release; we strongly advise you stop using this endpoint, and instead use the v2 endpoint instead.

Example Participant API request:

Example Participant API response:

Response statuses

GOPACS on behalf of a Grid Company or Trading Company
If a Grid Company or Trading Company doesn’t have their own UFTP API, they can use the GOPACS platform (https://gopacs.eu/) to

send and receive messages on their behalf. In this case, the UFTP messages are delivered to a GOPACS endpoint and GOPACS

responds on behalf of that participant.

If GOPACS sends a message on behalf of a participant, the SenderDomain is always the UFTP domain of the actual (original) Grid

Company or Trading Company, not GOPACS.

ISPs
Certain message types such as FlexRequest, FlexOffer and FlexOrder contain ISPs: Imbalance Settlement Periods.

While the Shapeshifter UFTP specification allows to include not only the ISPs that are requested (limited or steered), but also those that

are available (not limited or steered), GOPACS currently only expects the ISPs that are to be limited under the contract.

ISP Duration

Currently the ISP duration supported is always 15 minutes.

ISP Start

First ISP of the day is 1. 00:00:00 (inclusive) until 00:15:00 (exclusive)

Second ISP of the day is 2. 00:15:00 (inclusive) until 00:30:00 (exclusive)

1 GET /v2/participants/DSO/example.com HTTP/1.1
2 Accept: application/json

1 HTTP/1.1 200 OK
2 Content-Type: application/json
3
4 {
5 "domain": "example.com",
6 "publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E+c=",
7 "endpoint": "https://uftp.example.com/shapeshifter/v3/message"
8 }

200 ok

400 uftpRole is not AGR or DSO (CRO is not supported)

404 Participant not found for role + domain name.

HTTP status Possible cause

ISP-Duration Required. Must be PT15M

https://gopacs.eu/

Last ISP of the day is 96 or 100 or 92. 23:45:00 (inclusive) until 00:00:00 the next day (exclusive)

ISPs and Daylight Saving time

ISPs with respect to Daylight Saving Time (DST), assuming Europe/Amsterdam and a 15 minute ISP duration:

On the last Sunday of March when the clock goes from CET (standard) to CEST (summer), the number of ISPs will be 92:

ISP 1: 00:00-00:15

ISP 2: 00:15-00:30

ISP 3: 00:30-00:45

ISP 4: 00:45-01:00

ISP 5: 01:00-01:15

ISP 6: 01:15-01:30

ISP 7: 01:30-01:45

ISP 8: 01:45-03:00

ISP 9: 03:00-03:15

etc.

ISP 92: 23:45-00:00

On the last Sunday of October when the clock goes from CEST (summer) to CET (standard), the number of ISPs will be 100.

ISP 1: 00:00-00:15

ISP 2: 00:15-00:30

ISP 3: 00:30-00:45

ISP 4: 00:45-01:00

ISP 5: 01:00-01:15

ISP 6: 01:15-01:30

ISP 7: 01:30-01:45

ISP 8: 01:45-02:00

ISP 9: 02:00-02:15

ISP 10: 02:15-02:30

ISP 11: 02:30-02:45

ISP 12: 02:45-02:00

ISP 13: 02:00-02:15

etc.

ISP 100: 23:45-00:00

On any other day, the number of ISPs will be 96.

ISP (Min, Max) Power

The GUI shows the power values in MW

In the UFTP messages, power values are in W

Depending on the capacity limiting direction:

When limiting feed-in:

MaxPower = 0

MinPower is the maximum allowed feed in as a negative number. E.g. when limiting the feed in to 3 MW, MinPower = -3000000.

If no feed in is allowed at all, MinPower = 0

MinPower must be a multiple of -1000W (in other words, the limitation is specified in steps of 1kW) and must also match the steps

defined in the contract.

When limiting offtake:

This is the absolute capacity in watts, not the deviation as stated in the Shapeshifter specification. This might change when V4.x

of the Shapeshifter specification is implemented.

MinPower = 0

MaxPower is a positive number specifying the maximum allowed power offtake in Watts.

MaxPower must be a multiple of 1000W.

Baseline
This is a proposal and is not supported yet.

SignedMessage
Example of a SignedMessage HTTP request (some headers omitted for clarity):

ISP.Baseline

Not supported yet

Capacity baseline before this flexibility was requested. If flex capacity was activated earlier, in a different

conversation, then this is the capacity with the deviation applied.

Example: the DefaultBaseline is 100 MW. An earlier conversation has activated 25 MW of flexibility.

When this FlexRequest is sent to request the activation of another 20 MW of flexibility, the Baseline

would be 75 MW and the MaxPower would be 55 MW.

This is a proposal and is not supported yet.

ISP.DefaultBaseline

Not supported yet

Capacity in the default situation that would occur if no flexibility were activated. This is usually equal to the

contracted transport capacity (GTV).

Example: the GTV is 100 MW. No flexibility is activated yet: the DefaultBaseline is 100 MW. If 25 MW of

flexibility was already activated: the DefaultBaseline is still 100 MW.

This is a proposal and is not supported yet.

1 POST /shapeshifter/api/v3/message HTTP/1.1
2 Accept: application/json (or */* or omit)
3 Authorization: Bearer ...
4 Content-Type: text/xml
5
6 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
7 <SignedMessage
8 SenderDomain="dso.nl"
9 SenderRole="DSO"
10 Body="..."/>

SenderDomain Grid Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in

GOPACS, prior to receiving or sending messages.

When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the

SenderDomain is equal to the domain of actual UFTP participant.

SenderRole Must be DSO for a Grid Company.

Must be AGR for a Trading Company.

Other values are not supported.

Attribute GOPACS expectation

Response statuses

Message types with examples and field specifications

FlexRequest
Sent by the Grid Company to the Trading Company.

Example of a FlexRequest message for a CLC contract, where the contracted capacity is 100 MW, the requested flex capacity is 50 MW:

GOPACS is not considered a ‘party’ in the UFTP exchange and therefore does not have a ‘role’.

When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderRole

is equal to the role of actual UFTP participant.

Body Base64 encoded payload that will be decrypted using crypto_sign_open (see Public-key signatures | Libsodium documentation). GOPACS does not support

sealing and unsealing of messages (just signing).

GOPACS uses the SenderDomain and SenderRole to lookup the public key that is used for verifying the signature of the message.

Encryption-in-transit is covered by enforcing TLS connections.

Encryption-at-rest should be done using common security practices and tools by the implementing system.

GOPACS uses Lazysodium which is a Java wrapper over the Libsodium library.

200 Message has correct signature, was XSD valid and will be processed asynchronously.

400 Wrong content type

Technical XSD validation error (no functional validations yet)

Error during XML deserialization

401 Bearer token not provided or invalid.

Public key of sender not found or incorrect.

Message signature could not be verified with public key of sender.

403 Bearer token not authorized to perform this request.

5xx Unexpected (temporary) error on GOPACS side.

HTTP status Possible cause

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexRequest
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="agr.nl"
6 TimeStamp="2021-10-29T06:54:26.861Z"
7 MessageID="d3ae4836-55b1-4084-b54e-34107b22648c"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ServiceType="CBC"
10 ISP-Duration="PT15M"
11 TimeZone="Europe/Amsterdam"
12 Period="2021-10-30"
13 ContractID="A-AA-A-12345"
14 CongestionPoint="ean.265987182507322951"
15 Revision="1"

https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://github.com/terl/lazysodium-java
https://github.com/jedisct1/libsodium

Example of the same FlexRequest message signed with the ACC key:

All the validations from the UFTP specification apply. On top of that GOPACS has some additional restrictions with respect to the usage of

UFTP message for CLC:

16 ExpirationDateTime="2021-10-29T22:15:00.0000Z">
17 <ISP Start="48" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
18 <ISP Start="49" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
19 <ISP Start="50" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
20 <ISP Start="51" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
21 </FlexRequest>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="dso.nl" SenderRole="DSO"
3 Body="SwGOfSa4bZ9ghmuQmm7lvTkgDvF2F/dy1A3qqe7qkciiH/qyIuXdAAxfV8+jqW8Gc91pcqMoYr8i
4 FUeDmIvJDjxGbGV4UmVxdWVzdA0KICAgICAgICBWZXJzaW9uPSIzLjAuMCINCiAgICAgICAgU2VuZGVyRG
5 9tYWluPSJkc28ubmwiDQogICAgICAgIFJlY2lwaWVudERvbWFpbj0iYWdyLm5sIg0KICAgICAgICBUaW1l
6 U3RhbXA9IjIwMjEtMTAtMjlUMDY6NTQ6MjYuODYxWiINCiAgICAgICAgTWVzc2FnZUlEPSJkM2FlNDgzNi
7 01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiDQogICAgICAgIENvbnZlcnNhdGlvbklEPSI0OGNkYzNk
8 Mi01NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUzOGQiDQogICAgICAgIElTUC1EdXJhdGlvbj0iUFQxNU0iDQ
9 ogICAgICAgIFRpbWVab25lPSJFdXJvcGUvQW1zdGVyZGFtIg0KICAgICAgICBQZXJpb2Q9IjIwMjEtMTAt
10 MzAiDQogICAgICAgIENvbnRyYWN0SUQ9IkEtQUEtQS0xMjM0NSINCiAgICAgICAgQ29uZ2VzdGlvblBvaW
11 50PSJlYW4uMjY1OTg3MTgyNTA3MzIyOTUxIg0KICAgICAgICBSZXZpc2lvbj0iMSINCiAgICAgICAgRXhw
12 aXJhdGlvbkRhdGVUaW1lPSIyMDIxLTEwLTI5VDIyOjE1OjAwLjAwMDBaIj4NCiAgICA8SVNQIERpc3Bvc2
13 l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI0OCIg
14 RHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIi
15 BNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI0OSIgRHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bv
16 c2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI1MC
17 IgRHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIw
18 IiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI1MSIgRHVyYXRpb249IjEiLz4NCjwvRmxleFJlcXVlc3Q+"/>

Version Must be 3.0.0 (currently).

SenderDomain Grid Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in

GOPACS, prior to receiving or sending messages.

RecipientDomain Trading Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in

GOPACS, prior to receiving or sending messages.

TimeStamp Parsing supports different offsets and handles accordingly. The offset can be either in “+HH:mm:ss” format or

“Z”.

GOPACS ignores the milliseconds part when parsing.

GOPACS always sends either a UTC timestamp (no offset and “Z” suffix) or a timestamp in the

Europe/Amsterdam timezone (offset +01:00 or +02:00 depending on DST).

The milliseconds part can be between 0 and 9 digits where the omitted digits are implied to be zero.

Revision Required. Must be 1 . Revisions are currently not supported yet.

Attribute/Element GOPACS additional restrictions

FlexRequestResponse
Example FlexRequestResponse:

Example of the same FlexRequestResponse message signed with the ACC key:

ServiceType The ServiceType specifies which type of flexibility is being requested.

ISP-Duration Required. See ISPs.

TimeZone Required. Must be Europe/Amsterdam

Period Required. The day of congestion. Format: YYYY-MM-DD always interpreted in Europe/Amsterdam time zone. Any offset is ignored.

The message must be sent before 12:00:00 the day before Period.

Examples:

If the message is received before 12:00:00, then the Period may be tomorrow or later.

If the message is received after 12:00:00, then the Period must be the day after tomorrow or later.

ExpirationDateTime The expiration date time must be no later than 12:00:00 the day before the day of congestion (Period).

ContractID Functional required. Typical format: A-AA-A-12345

Trading Company must log in to the GOPACS UI and register the CLC contract, prior to receiving or sending

messages.

CongestionPoint ean.[0-9]{18}

Must be a known EAN of a preregistered CLC contract in GOPACS.

Does not have to be known as Grid Connection in GOPACS.

ServiceType Optional. Ignored.

ISP Required. See ISPs.

ISP.Start

ISP.Duration

Required. See ISPs.

ISP.Disposition Must be Requested See ISPs.

ISP.MinPower

ISP.MaxPower

See ISPs.

CBC Capacity limiting contract (capaciteitsbeperkingscontract)

ServiceType

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexRequestResponse
3 Version="3.0.0"
4 SenderDomain="agr.nl"
5 RecipientDomain="dso.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessageID="7f0f4e68-f842-4b92-911e-b26f85525067"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 Result="Accepted"
10 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"/>

Or when it is rejected:

Example of the same FlexRequestResponse message signed with the ACC key:

FlexOffer
Sent by the Trading Company to the Grid Company as answer to a FlexRequest.

Example of a FlexOffer message for a CBC contract:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"
3 Body="3fD4Ie5Jk6h7k6TQaEsJ4Vego1CXpA/1ztx1yaej1db0SnufscFZZy630EsUJFVM3Ihy0+3
4 V9WDcWOR5LdnJATxGbGV4UmVxdWVzdFJlc3BvbnNlDQogICAgICAgIFZlcnNpb249IjMuMC4wIg0K
5 ICAgICAgICBTZW5kZXJEb21haW49ImFnci5ubCINCiAgICAgICAgUmVjaXBpZW50RG9tYWluPSJkc
6 28ubmwiDQogICAgICAgIFRpbWVTdGFtcD0iMjAyMS0xMC0yOVQwNjo1NDozNi40NDM3OTYyWiINCi
7 AgICAgICAgTWVzc2FnZUlEPSI3ZjBmNGU2OC1mODQyLTRiOTItOTExZS1iMjZmODU1MjUwNjciDQo
8 gICAgICAgIENvbnZlcnNhdGlvbklEPSI0OGNkYzNkMi01NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUz
9 OGQiDQogICAgICAgIFJlc3VsdD0iQWNjZXB0ZWQiDQogICAgICAgIEZsZXhSZXF1ZXN0TWVzc2FnZ
10 UlEPSJkM2FlNDgzNi01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexRequestResponse
3 Version="3.0.0"
4 SenderDomain="aggregator.org"
5 RecipientDomain="uftp.dso.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessageID="7f0f4e68-f842-4b92-911e-b26f85525067"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 Result="Rejected"
10 RejectionReason="Reference Period mismatch"
11 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="aggregator.org" SenderRole="AGR"
3 Body="+hM5FFliOQEpuMLwVpy6KKhb8OxOtrCu//VhLYnhiJAwZC8Eh743SPErLsPR9bpWTJdnuSfD
4 SY3UamQuafGVCzxGbGV4UmVxdWVzdFJlc3BvbnNlDQogICAgICAgIFZlcnNpb249IjMuMC4wIg0KIC
5 AgICAgICBTZW5kZXJEb21haW49ImFnZ3JlZ2F0b3Iub3JnIg0KICAgICAgICBSZWNpcGllbnREb21h
6 aW49InVmdHAuZHNvLm5sIg0KICAgICAgICBUaW1lU3RhbXA9IjIwMjEtMTAtMjlUMDY6NTQ6MzYuND
7 QzNzk2MloiDQogICAgICAgIE1lc3NhZ2VJRD0iN2YwZjRlNjgtZjg0Mi00YjkyLTkxMWUtYjI2Zjg1
8 NTI1MDY3Ig0KICAgICAgICBDb252ZXJzYXRpb25JRD0iNDhjZGMzZDItNTZjMC00MzZjLThkNWEtNm
9 Y2Y2MzZGM1MzhkIg0KICAgICAgICBSZXN1bHQ9IlJlamVjdGVkIg0KICAgICAgICBSZWplY3Rpb25S
10 ZWFzb249IlJlZmVyZW5jZSBQZXJpb2QgbWlzbWF0Y2giDQogICAgICAgIEZsZXhSZXF1ZXN0TWVzc2
11 FnZUlEPSJkM2FlNDgzNi01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOffer
3 Version="3.0.0"
4 SenderDomain="agr.nl"
5 RecipientDomain="dso.nl"
6 TimeStamp="2021-10-29T06:54:36.8868538Z"
7 MessageID="338ed243-5517-4400-962e-2b7b812c468c"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ServiceType="CBC"
10 ISP-Duration="PT15M"
11 TimeZone="Europe/Amsterdam"
12 Period="2021-10-30"

Example of the same FlexOffer message signed with the ACC key:

 Unsolicited FlexOffer messages are rejected by GOPACS. There must always be a preceding FlexRequest.

 At most 1 FlexOffer message may be sent as part of a conversation. All successive FlexOffer messages will be rejected by GOPACS.

Other attributes like Period, CongestionPoint, ContractID, etc. must be equal to the original FlexRequest.

FlexOfferResponse
Example FlexOfferResponse:

13 CongestionPoint="ean.265987182507322951"
14 ExpirationDateTime="2021-10-29T10:30:00Z"
15 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"
16 ContractID="A-AA-A-12345"
17 BaselineReference=""
18 Currency="EUR">
19 <OfferOption OptionReference="ba40a5f8-849b-4fe6-958f-e628a1653558"
20 Price="0.00">
21 <ISP Start="58" Duration="1" Power="50000000"/>
22 <ISP Start="59" Duration="1" Power="50000000"/>
23 <ISP Start="60" Duration="1" Power="50000000"/>
24 <ISP Start="61" Duration="1" Power="50000000"/>
25 </OfferOption>
26 </FlexOffer>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"
3 Body="whfSzCmP9Oml2y/6lfz/7a6hRvz7Am5waAwmtKT52kbEG9OhqHTj4DisCRNnmGHrmDjAsq6AyNB/YG+gDnZ5BjxGbGV4

D-

PrognosisMessage

ID

Ignored.

BaselineReference Ignored.

Currency Must be EUR .

Price Must be 0.00 (for now). Must comply with ISO 4217

0.00 , 0.0 and 0 are all allowed and considered equal in the GOPACS implementation.

OfferOption Exactly 1 OfferOption element is expected.

OfferOption.MinAct

ivationFactor

Optional. Ignored.

ISP.Power Depending on the contractual agreements between AGR and DSO the Power either is equal to what has been

requested in the FlexRequest or it can deviate.

In the case of a limitation on production, Power refers to the MinPower attribute of the ISP . In case the

consumption is limited, Power refers to the MaxPower attribute.

See ISPs.

It is allowed to send an offer on a subset of the requested ISPs.

Attribute/Element

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/ISO_4217

FlexOrder (for CLC)
Example of a FlexOrder message for a CLC contract, where the off-take transport capacity is limited to 50 MW (the original contracted

transport capacity is100 MW):

2 <FlexOfferResponse
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="arg.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessageID = UUID
8 ConversationID = UUID
9 FlexOfferMessageID = UUID
10 Result = ("Accepted" | "Rejected")
11 RejectionReason = String (Only if Result = "Rejected")
12 />

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrder
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="agr.nl"
6 TimeStamp="2021-10-29T06:55:36.518Z"
7 MessageID="dc0f19c4-3835-4753-8f0c-0319d6642fbb"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ServiceType="CBC"
10 ISP-Duration="PT15M"
11 TimeZone="Europe/Amsterdam"
12 Period="2021-10-30"
13 CongestionPoint="ean.265987182507322951"
14 FlexOfferMessageID="338ed243-5517-4400-962e-2b7b812c468c"
15 ContractID="A-AA-A-12345"
16 Price="0.00"
17 Currency="EUR"
18 OrderReference="None">
19 <ISP Start="58" Duration="1" Power="50000000/>
20 <ISP Start="59" Duration="1" Power="50000000" />
21 <ISP Start="60" Duration="1" Power="50000000"/>
22 <ISP Start="61" Duration="1" Power="50000000"/>
23 </FlexOrder>

ServiceType CBC

Currency Must be EUR .

Price Must equal the Price in the FlexOffer.

OrderReference May be filled by the calling grid company for settlement process.

If the grid operator is using GOPACS for UFTP, and they start a request from the GUI, this field is filled with a

generated UUID.

ISP Currently GOPACS orders exactly what was offered (if on behalf of a Grid Company) - including ISPs and min activation factor.

ISP.Power Depending on the contractual agreements between AGR and DSO the Power either is equal to what has

been requested in the FlexRequest or it can deviate.

Attribute/Element

FlexOrder (for TDTR)

This requires version 3.1.0.

Example of a FlexOrder message for a TDTR contract, where the transport capacity is limited to 50 MW (the original contracted transport

capacity is 70 MW):

In the case of a limitation on production, power refers to the MinPower attribute of the FlexRequest . In case

the consumption is limited, power refers to the MaxPower attribute. See ISPs.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrder
3 Version="3.1.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="agr.nl"
6 TimeStamp="2021-10-29T06:55:36.518Z"
7 MessageID="dc0f19c4-3835-4753-8f0c-0319d6642fbb"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ServiceType="TDTR"
10 ISP-Duration="PT15M"
11 TimeZone="Europe/Amsterdam"
12 Period="2021-10-30"
13 CongestionPoint="ean.265987182507322951"
14 ContractID="0000001"
15 Price="0.00"
16 Currency="EUR"
17 OrderReference="None">
18 <ISP Start="58" Duration="1" Power="50000000"/>
19 <ISP Start="59" Duration="1" Power="50000000"/>
20 <ISP Start="60" Duration="1" Power="50000000"/>
21 <ISP Start="61" Duration="1" Power="50000000"/>
22 </FlexOrder>

Version Must be 3.1.0 for ATR.

ServiceType Type of ATR contract.

ContractID Unique number of the ATR contract.

Currency Must be EUR .

Price Must be 0.00 . But is ignored for now.

OrderReference May be filled by the calling grid company for settlement process.

ISP ISPs that are to be limited under the contract. See ISPs of FlexRequest .

ISP.Power See ISPs.

Attribute/Element

TDTR Time-bounded transport right (tijdsduurgebonden transportright)

NFA Non firm transport right (non-firm ATO)

ServiceType

FlexOrderResponse

Example FlexOrderResponse:

TestMessage & TestMessageResponse
The UFTP protocol provides the TestMessage and TestMessageResponse message types for testing purposes. Both are Supported by

the clc-message-broker. They can be used to test your UFTP settings and to test sending an receiving messages and message

responses.

Currently, this is only supported for API, not on the GUI, it is not possible to trigger a test message on the GOPACS GUI.

Testing sending messages and receiving a response message

If a TestMessage is sent to the clc-message-broker with a recipient that is using GOPACS for UFTP, a TestMessageResponse will be sent

back automatically.

Test receiving messages and responding with a response message

To test receiving a TestMessage and responding with a TestMessageResponse you can ask your grid company to send a TestMessage

with your uftp implementation as recipient. The clc-message-broker will then forward this test message to your uftp implementation.

Other message types
 FlexOfferRevocation not supported yet

 FlexRequest revisions not supported yet

 Other message types are not supported yet

GOPACS implementation specifics
 A duplicate MessageID is immediately responded to with a 400 Bad Request and not a 200 OK followed by “Rejected” response as

described in the specification!

 MinPower, MaxPower and Power are implemented as absolute values.

An “Accepted” response from the Trading Company means that there is a binding agreement.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrderResponse
3 Version = "3.0.0"
4 SenderDomain = "dso.nl"
5 RecipientDomain = "arg.nl"
6 TimeStamp = "2021-10-29T06:54:36.4437962Z"
7 MessageID = UUID
8 ConversationID = UUID
9 FlexOrderMessageID = UUID
10 Result = ("Accepted" | "Rejected")
11 RejectionReason = String (Only if Result = "Rejected")
12 />

 After a 200 OK is returned, a received message is immediately processed by GOPACS. An accepted or rejected response is sent back

almost instantaneously.

 The user receives realtime email notifications when a FlexRequest, FlexOffer or FlexOrder is received, rejected or failed to deliver.

 An outgoing UFTP message is retried every 3 minutes for a maximum of 5 tries. After that, the user and GOPACS DevOps team are

notified of a failure to deliver. Specifically on a 400 Bad Request, a message is not retried.

 Typically there will be at most 15 mins between FlexRequest and FlexOrder.

