
Flex trading with Capacity Limiting Contracts using UFTP messages

Last updated: 10-6-2025

GOPACS supports flex trading with Capacity Limiting Contracts (CLC or CBC, Capaciteitsbeperkingscontract) and alternative non-firm transport rights such as TDTR/NFA

through the exchange of Shapeshifter UFTP messages.

The implementation must be compliant to the Shapeshifter UFTP specification version 3.0.0 (for TDTR, 3.1.0 is required), with some restrictions which are described

separately in this document.

Table of contents

CLC message flow

TDTR/NFA message flow

Message broker

Open source library

GOPACS environments

Getting started

Account Setup for the GOPACS Application

Set up an API client

Enter your company details for UFTP and OAuth2.0

Obtaining a Bearer token

Implement UFTP endpoint

Participant API ('Address book')

Search on EAN and UFTP Role

Search on Domain Name and UFTP Role

GOPACS on behalf of a Grid Company or Trading Company

ISPs

Baseline

SignedMessage

Message types with examples and field specifications

FlexRequest

FlexRequestResponse

FlexOffer

FlexOfferResponse

FlexOrder (for CLC)

FlexOrder (for TDTR)

FlexOrderResponse

Must Run / CSC

Contracts

UFTP messages

Validations

Testing receiving and sending flex messages

Acceptance environment

Production environment

GOPACS implementation specifics

CLC message flow

This requires minimum version 3.0.0, but some improvements are made in 3.1.0. Implementations should adopt version 3.1.0 as soon as possible.

Overview of the GOPACS and UFTP message exchange for CLC contracts. The part where the URL and the public key is retrieved, is GOPACS specific.

Currently, a CLC call (CBC-afroep) uses the following message flow:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexRequest message is sent by the grid operator to the trading company, requesting a certain amount of flexibility.

3. FlexRequestResponse message is sent by the trading company to the grid operator, acknowledging the receival of the request.

4. Trading company determines what flexibility is available.

5. FlexOffer message is sent by the trading company to the grid operator, indicating what flexibility is available.

6. FlexOfferResponse message is sent by the grid operator to the trading company, acknowledging the receival of the offer.

7. Grid operator recalculates and chooses which flexibility to procure.

https://github.com/shapeshifter/shapeshifter-specification

8. FlexOrder message is sent by the grid operator to the trading company, to procure the flexibility.

9. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.

10. The call (afroep) is now completed.

For a readable version of the above diagram, please check the support documents sections.

TDTR/NFA message flow

This requires version 3.1.0.

Currently, a call (afroep) of TDTR/NFA contracts uses the following message flow:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexOrder message is sent by the grid operator to the trading company, to procure the flexibility.

3. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.

4. The call (afroep) is now completed.

There is no negotiation phase where a FlexRequest and FlexOffer are exchanged.

Message broker

The UFTP protocol allows direct communication between grid operators and trading companies. However, for the sake of monitoring and reporting, UFTP messages

should be communicated via the GOPACS UFTP Message Broker. The message broker will forward the messages to the specified UFTP recipient.

Open source library

To aid in building a compliant implementation GOPACS has built an open source library: https://github.com/shapeshifter/shapeshifter-library

When implementing the protocol, make sure the implementation is compliant to the GOPACS specifications as described in this document. All UFTP traffic must be

uniform in order to make sure that every participant is able to communicate with each other.

GOPACS uses (in this documentation) the term Trading Company for every participant that has a contract with the Grid Company. In the UFTP specification the term AGR

(aggregator) is used, and in some Capacity Limit Contracts the term CSP is used.

GOPACS environments

GOPACS UI https://app.acc.gopacs.eu https://app.gopacs.eu

UFTP endpoint

This is where you send your

messages to

https://clc-message-broker.acc.gopacs-

services.eu/shapeshifter/api/v3/message

https://clc-message-broker.gopacs-

services.eu/shapeshifter/api/v3/message

Participant API (address book) https://clc-message-broker.acc.gopacs-

services.eu/v2/participants/

https://clc-message-broker.gopacs-services.eu/v2/participants/

API documentation Swagger UI Swagger UI

Public IPs of GOPACS (for IP

whitelisting)

3.75.32.104

3.77.164.86

35.158.231.79

3.121.132.49

3.76.130.111

3.78.82.175

Sign-up link for new CSPs Sign-up for GOPACS Sign-up for GOPACS

Environment ACC (suggested for testing integrations) PRD

https://github.com/shapeshifter/shapeshifter-library
https://app.acc.gopacs.eu/
https://app.gopacs.eu/
https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://app.acc.gopacs.eu/signup
https://app.gopacs.eu/signup

Getting started

Account Setup for the GOPACS Application

For New CSPs or Affiliates

If you are a new CSP or affiliate (aangeslotene), you can create an account yourself if you don't already have one. Please note that each environment requires a

separate account—accounts are not shared across environments.

After completing the sign-up form and accepting the terms, your request will be sent to a grid operator for approval. Once approved, you will receive an email with

instructions to finalize your account setup. Only then will you be able to log in to the GOPACS application.

Set up an API client

After signing up to GOPACS, you need to create at least one API client to authenticate your company on API requests:

1. Log in to the GOPACS GUI as company admin

2. Navigate to ‘API clientsʼ ACC: https://app.acc.gopacs.eu/api-clients or PRD: https://app.gopacs.eu/api-clients

3. Create a new API client on this page

4. Store the client ID and client secret somewhere secure (e.g. secrets manager software). Note that the client secret cannot be viewed again.

Enter your company details for UFTP and OAuth2.0

Please refer to the manual Company settings for participating in CLC (Capacity Limiting Contracts) on Documents and manuals - GOPACS

Obtaining a Bearer token

Use the OAuth2 client credentials flow to obtain a Bearer token:

1. Configure an OAuth2 client to use the GOPACS OAuth2 token endpoint (see the table above)

2. Configure the client ID and client secret of the API client created via the GOPACS GUI

3. Perform the OAuth2 client credentials flow

4. A Bearer token will be returned (access token) which will be valid for a limited time (usually 5 minutes)

5. Include the Bearer token in each HTTP request to the GOPACS API

6. Refresh the Bearer token in time by performing the same flow again

Implement UFTP endpoint

As a Trading Company you need to have an implementation of the UFTP protocol for sending and receiving messages to and from grid operators. To receive UFTP

messages you need to expose an endpoint compliant to the Shapeshifter UFTP specification, that is ready to accept UFTP messages from GOPACS.

OAuth2 token endpoint https://auth.acc.gopacs-

services.eu/realms/gopacs/protocol/openid-connect/token

https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-

connect/token

https://app.acc.gopacs.eu/api-clients
https://app.gopacs.eu/api-clients
https://www.gopacs.eu/en/documents-and-manuals/
https://oauth.net/2/grant-types/client-credentials/
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token

Participant API ('Address book')

DNS discovery as described in the UFTP specification is currently not supported by GOPACS.

GOPACS provides an alternative API for discovery of UFTP participant information: the Participant API.

There are currently two endpoints for the discovery of UFTP Participant information; 1) Search on EAN and UFTP Role and 2) Search on Domain Name and UFTP Role

Search on EAN and UFTP Role

You can retrieve the participant information by searching on the EAN of the contracted grid connection and the UFTP role of the participant (DSO or AGR). As there may

be multiple trading companies/aggregators on one grid connection, the response is a list of participants.

Example Participant API request:

Example Participant API response:

NB! Since we actively encourage to let all UFTP message go through the CLC Message Broker for reporting purposes, the returned participant ‘endpointʼ is always the

CLC Message Broker endpoint.

Response Status

Search on Domain Name and UFTP Role

This is typically used to verify and decrypt the payload when receiving a message.

Example Participant API request:

Example Participant API response:

Response statuses

NB. It is also possible to make use of the GOPACS UI to send and receive UFTP Flex messages.

1 GET /v2/participants/DSO?contractedEan=123456789012345678 HTTP/1.1

2 Accept: application/json

1 HTTP/1.1 200 OK

2 Content-Type: application/json

3

4 [

5 {

6 "domain": "example.com",

7 "publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E+c=",

8 "endpoint": "https://clc-message-broker.gopacs-services.eu/shapeshifter/api/v3/message"

9 }

10]

200 ok (note: if no participants could be found, an empty list is returned with HTTP Status 200)

400 EAN is not 18 characters wide, or uftpRole is not AGR or DSO (CRO is not supported)

HTTP status Possible cause

GOPACS also provides a v1/participants endpoint, but this API endpoint has been marked as deprecated, and will be removed in a future release; we strongly

advise you stop using this endpoint, and instead use the v2 endpoint instead.

1 GET /v2/participants/DSO/example.com HTTP/1.1

2 Accept: application/json

1 HTTP/1.1 200 OK

2 Content-Type: application/json

3

4 {

5 "domain": "example.com",

6 "publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E+c=",

7 "endpoint": "https://uftp.example.com/shapeshifter/v3/message"

8 }

200 ok

HTTP status Possible cause

GOPACS on behalf of a Grid Company or Trading Company

If a Grid Company or Trading Company doesnʼt have their own UFTP API, they can use the GOPACS platform (https://gopacs.eu/) to send and receive messages on their

behalf. In this case, the UFTP messages are delivered to a GOPACS endpoint and GOPACS responds on behalf of that participant.

If GOPACS sends a message on behalf of a participant, the SenderDomain is always the UFTP domain of the actual (original) Grid Company or Trading Company, not

GOPACS.

ISPs

Certain message types such as FlexRequest, FlexOffer and FlexOrder contain ISPs: Imbalance Settlement Periods.

While the Shapeshifter UFTP specification allows to include not only the ISPs that are requested (limited or steered), but also those that are available (not limited or

steered), GOPACS currently only expects the ISPs that are to be limited under the contract.

ISP Duration

Currently the ISP duration supported is always 15 minutes.

ISP Start

First ISP of the day is 1. 00:00:00 (inclusive) until 00:15:00 (exclusive)

Second ISP of the day is 2. 00:15:00 (inclusive) until 00:30:00 (exclusive)

Last ISP of the day is 96 or 100 or 92. 23:45:00 (inclusive) until 00:00:00 the next day (exclusive)

ISPs and Daylight Saving time

ISPs with respect to Daylight Saving Time (DST), assuming Europe/Amsterdam and a 15 minute ISP duration:

On the last Sunday of March when the clock goes from CET (standard) to CEST (summer), the number of ISPs will be 92:

ISP 1: 00:00-00:15

ISP 2: 00:15-00:30

ISP 3: 00:30-00:45

ISP 4: 00:45-01:00

ISP 5: 01:00-01:15

ISP 6: 01:15-01:30

ISP 7: 01:30-01:45

ISP 8: 01:45-03:00

ISP 9: 03:00-03:15

etc.

ISP 92: 23:45-00:00

On the last Sunday of October when the clock goes from CEST (summer) to CET (standard), the number of ISPs will be 100.

ISP 1: 00:00-00:15

ISP 2: 00:15-00:30

ISP 3: 00:30-00:45

ISP 4: 00:45-01:00

ISP 5: 01:00-01:15

ISP 6: 01:15-01:30

ISP 7: 01:30-01:45

ISP 8: 01:45-02:00

ISP 9: 02:00-02:15

ISP 10: 02:15-02:30

ISP 11: 02:30-02:45

ISP 12: 02:45-02:00

ISP 13: 02:00-02:15

etc.

ISP 100: 23:45-00:00

On any other day, the number of ISPs will be 96.

ISP (Min, Max) Power

400 uftpRole is not AGR or DSO (CRO is not supported)

404 Participant not found for role + domain name.

ISP-Duration Required. Must be PT15M

https://gopacs.eu/

The GUI shows the power values in MW

In the UFTP messages, power values are in W

Depending on the capacity limiting direction:

When limiting feed-in:

MaxPower = 0

MinPower is the maximum allowed feed in as a negative number. E.g. when limiting the feed in to 3 MW, MinPower = -3000000.

If no feed in is allowed at all, MinPower = 0

MinPower must be a multiple of -1000W (in other words, the limitation is specified in steps of 1kW) and must also match the steps defined in the contract.

When limiting offtake:

MinPower = 0

MaxPower is a positive number specifying the maximum allowed power offtake in Watts.

MaxPower must be a multiple of 1000W.

Baseline

This is a proposal and is not supported yet.

SignedMessage

Example of a SignedMessage HTTP request (some headers omitted for clarity):

This is the absolute capacity in watts, not the deviation as stated in the Shapeshifter specification. This might change when V4.x of the Shapeshifter specification

is implemented.

ISP.Baseline

Not supported yet

Capacity baseline before this flexibility was requested. If flex capacity was activated earlier, in a different conversation, then this is the

capacity with the deviation applied.

Example: the DefaultBaseline is 100 MW. An earlier conversation has activated 25 MW of flexibility. When this FlexRequest is sent to

request the activation of another 20 MW of flexibility, the Baseline would be 75 MW and the MaxPower would be 55 MW.

This is a proposal and is not supported yet.

ISP.DefaultBaseline

Not supported yet

Capacity in the default situation that would occur if no flexibility were activated. This is usually equal to the contracted transport capacity

(GTV).

Example: the GTV is 100 MW. No flexibility is activated yet: the DefaultBaseline is 100 MW. If 25 MW of flexibility was already activated:

the DefaultBaseline is still 100 MW.

This is a proposal and is not supported yet.

1 POST /shapeshifter/api/v3/message HTTP/1.1

2 Accept: application/json (or */* or omit)

3 Authorization: Bearer ...

4 Content-Type: text/xml

5

6 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

7 <SignedMessage

8 SenderDomain="dso.nl"

9 SenderRole="DSO"

10 Body="..."/>

SenderDomain Grid Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in GOPACS, prior to receiving or sending

messages.

When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderDomain is equal to the domain of

actual UFTP participant.

SenderRole Must be DSO for a Grid Company.

Must be

AGR

 for a Trading Company.

Other values are not supported.

GOPACS is not considered a ‘partyʼ in the UFTP exchange and therefore does not have a ‘roleʼ.

Attribute GOPACS expectation

Response statuses

Message types with examples and field specifications

FlexRequest

Sent by the Grid Company to the Trading Company.

Example of a FlexRequest message for a CLC contract, where the contracted capacity is 100 MW, the requested flex capacity is 50 MW:

Example of the same FlexRequest message signed with the ACC key:

When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderRole is equal to the role of actual UFTP

participant.

Body Base64 encoded payload that will be decrypted using crypto_sign_open (see Public-key signatures | Libsodium documentation).

GOPACS does not support sealing and unsealing of messages (just signing).

GOPACS uses the SenderDomain and SenderRole to lookup the public key that is used for verifying the signature of the message.

Encryption-in-transit is covered by enforcing TLS connections.

Encryption-at-rest should be done using common security practices and tools by the implementing system.

GOPACS uses Lazysodium which is a Java wrapper over the Libsodium library.

200 Message has correct signature, was XSD valid and will be processed asynchronously.

400 Wrong content type

Technical XSD validation error (no functional validations yet)

Error during XML deserialization

401 Bearer token not provided or invalid.

Public key of sender not found or incorrect.

Message signature could not be verified with public key of sender.

403 Bearer token not authorized to perform this request.

5xx Unexpected (temporary) error on GOPACS side.

HTTP status Possible cause

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexRequest

3 Version="3.0.0"

4 SenderDomain="dso.nl"

5 RecipientDomain="agr.nl"

6 TimeStamp="2021-10-29T06:54:26.861Z"

7 MessageID="d3ae4836-55b1-4084-b54e-34107b22648c"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 ServiceType="CBC"

10 ISP-Duration="PT15M"

11 TimeZone="Europe/Amsterdam"

12 Period="2021-10-30"

13 ContractID="A-AA-A-12345"

14 CongestionPoint="ean.265987182507322951"

15 Revision="1"

16 ExpirationDateTime="2021-10-29T22:15:00.0000Z">

17 <ISP Start="48" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>

18 <ISP Start="49" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>

19 <ISP Start="50" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>

20 <ISP Start="51" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>

21 </FlexRequest>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <SignedMessage SenderDomain="dso.nl" SenderRole="DSO"

3 Body="SwGOfSa4bZ9ghmuQmm7lvTkgDvF2F/dy1A3qqe7qkciiH/qyIuXdAAxfV8+jqW8Gc91pcqMoYr8i

4 FUeDmIvJDjxGbGV4UmVxdWVzdA0KICAgICAgICBWZXJzaW9uPSIzLjAuMCINCiAgICAgICAgU2VuZGVyRG

5 9tYWluPSJkc28ubmwiDQogICAgICAgIFJlY2lwaWVudERvbWFpbj0iYWdyLm5sIg0KICAgICAgICBUaW1l

6 U3RhbXA9IjIwMjEtMTAtMjlUMDY6NTQ6MjYuODYxWiINCiAgICAgICAgTWVzc2FnZUlEPSJkM2FlNDgzNi

7 01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiDQogICAgICAgIENvbnZlcnNhdGlvbklEPSI0OGNkYzNk

8 Mi01NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUzOGQiDQogICAgICAgIElTUC1EdXJhdGlvbj0iUFQxNU0iDQ

https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://github.com/terl/lazysodium-java
https://github.com/jedisct1/libsodium

All the validations from the UFTP specification apply. On top of that GOPACS has some additional restrictions with respect to the usage of UFTP message for CLC:

9 ogICAgICAgIFRpbWVab25lPSJFdXJvcGUvQW1zdGVyZGFtIg0KICAgICAgICBQZXJpb2Q9IjIwMjEtMTAt

10 MzAiDQogICAgICAgIENvbnRyYWN0SUQ9IkEtQUEtQS0xMjM0NSINCiAgICAgICAgQ29uZ2VzdGlvblBvaW

11 50PSJlYW4uMjY1OTg3MTgyNTA3MzIyOTUxIg0KICAgICAgICBSZXZpc2lvbj0iMSINCiAgICAgICAgRXhw

12 aXJhdGlvbkRhdGVUaW1lPSIyMDIxLTEwLTI5VDIyOjE1OjAwLjAwMDBaIj4NCiAgICA8SVNQIERpc3Bvc2

13 l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI0OCIg

14 RHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIi

15 BNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI0OSIgRHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bv

16 c2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI1MC

17 IgRHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIw

18 IiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI1MSIgRHVyYXRpb249IjEiLz4NCjwvRmxleFJlcXVlc3Q+"/>

Version Must be 3.0.0 (currently).

SenderDomain Grid Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in GOPACS, prior to receiving or sending

messages.

RecipientDomain Trading Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in GOPACS, prior to receiving or

sending messages.

TimeStamp Parsing supports different offsets and handles accordingly. The offset can be either in “+HH:mm:ss” format or “Z”.

GOPACS ignores the milliseconds part when parsing.

GOPACS always sends either a UTC timestamp (no offset and “Z” suffix) or a timestamp in the Europe/Amsterdam timezone (offset +01:00

or +02:00 depending on DST).

The milliseconds part can be between 0 and 9 digits where the omitted digits are implied to be zero.

Revision Required. Must be 1 . Revisions are currently not supported yet.

ServiceType The ServiceType specifies which type of flexibility is being requested.

ISP-Duration Required. See ISPs.

TimeZone Required. Must be Europe/Amsterdam

Period Required. The day of congestion. Format: YYYY-MM-DD always interpreted in Europe/Amsterdam time zone. Any offset is ignored.

The message must be sent before 12:00:00 the day before Period.

Examples:

If the message is received before 12:00:00, then the Period may be tomorrow or later.

If the message is received after 12:00:00, then the Period must be the day after tomorrow or later.

ExpirationDateTime The expiration date time must be no later than 12:00:00 the day before the day of congestion (Period).

ContractID Functional required. Typical format: A-AA-A-12345

Trading Company must log in to the GOPACS UI and register the CLC contract, prior to receiving or sending messages.

CongestionPoint ean.[0-9]{18}

Must be a known EAN of a preregistered CLC contract in GOPACS.

Does not have to be known as Grid Connection in GOPACS.

ISP Required. See ISPs.

ISP.Start

ISP.Duration

Required. See ISPs.

ISP.Disposition Must be Requested See ISPs.

ISP.MinPower

ISP.MaxPower

See ISPs.

Attribute/Element GOPACS additional restrictions

CBC Capacity Limiting Contract (Capaciteitsbeperkingscontract)

ServiceType

FlexRequestResponse

Example FlexRequestResponse:

Example of the same FlexRequestResponse message signed with the ACC key:

Or when it is rejected:

Example of the same FlexRequestResponse message signed with the ACC key:

FlexOffer

Sent by the Trading Company to the Grid Company as answer to a FlexRequest.

Example of a FlexOffer message for a CBC contract:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexRequestResponse

3 Version="3.0.0"

4 SenderDomain="agr.nl"

5 RecipientDomain="dso.nl"

6 TimeStamp="2021-10-29T06:54:36.4437962Z"

7 MessageID="7f0f4e68-f842-4b92-911e-b26f85525067"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 Result="Accepted"

10 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"

3 Body="3fD4Ie5Jk6h7k6TQaEsJ4Vego1CXpA/1ztx1yaej1db0SnufscFZZy630EsUJFVM3Ihy0+3

4 V9WDcWOR5LdnJATxGbGV4UmVxdWVzdFJlc3BvbnNlDQogICAgICAgIFZlcnNpb249IjMuMC4wIg0K

5 ICAgICAgICBTZW5kZXJEb21haW49ImFnci5ubCINCiAgICAgICAgUmVjaXBpZW50RG9tYWluPSJkc

6 28ubmwiDQogICAgICAgIFRpbWVTdGFtcD0iMjAyMS0xMC0yOVQwNjo1NDozNi40NDM3OTYyWiINCi

7 AgICAgICAgTWVzc2FnZUlEPSI3ZjBmNGU2OC1mODQyLTRiOTItOTExZS1iMjZmODU1MjUwNjciDQo

8 gICAgICAgIENvbnZlcnNhdGlvbklEPSI0OGNkYzNkMi01NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUz

9 OGQiDQogICAgICAgIFJlc3VsdD0iQWNjZXB0ZWQiDQogICAgICAgIEZsZXhSZXF1ZXN0TWVzc2FnZ

10 UlEPSJkM2FlNDgzNi01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexRequestResponse

3 Version="3.0.0"

4 SenderDomain="aggregator.org"

5 RecipientDomain="uftp.dso.nl"

6 TimeStamp="2021-10-29T06:54:36.4437962Z"

7 MessageID="7f0f4e68-f842-4b92-911e-b26f85525067"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 Result="Rejected"

10 RejectionReason="Reference Period mismatch"

11 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <SignedMessage SenderDomain="aggregator.org" SenderRole="AGR"

3 Body="+hM5FFliOQEpuMLwVpy6KKhb8OxOtrCu//VhLYnhiJAwZC8Eh743SPErLsPR9bpWTJdnuSfD

4 SY3UamQuafGVCzxGbGV4UmVxdWVzdFJlc3BvbnNlDQogICAgICAgIFZlcnNpb249IjMuMC4wIg0KIC

5 AgICAgICBTZW5kZXJEb21haW49ImFnZ3JlZ2F0b3Iub3JnIg0KICAgICAgICBSZWNpcGllbnREb21h

6 aW49InVmdHAuZHNvLm5sIg0KICAgICAgICBUaW1lU3RhbXA9IjIwMjEtMTAtMjlUMDY6NTQ6MzYuND

7 QzNzk2MloiDQogICAgICAgIE1lc3NhZ2VJRD0iN2YwZjRlNjgtZjg0Mi00YjkyLTkxMWUtYjI2Zjg1

8 NTI1MDY3Ig0KICAgICAgICBDb252ZXJzYXRpb25JRD0iNDhjZGMzZDItNTZjMC00MzZjLThkNWEtNm

9 Y2Y2MzZGM1MzhkIg0KICAgICAgICBSZXN1bHQ9IlJlamVjdGVkIg0KICAgICAgICBSZWplY3Rpb25S

10 ZWFzb249IlJlZmVyZW5jZSBQZXJpb2QgbWlzbWF0Y2giDQogICAgICAgIEZsZXhSZXF1ZXN0TWVzc2

11 FnZUlEPSJkM2FlNDgzNi01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexOffer

3 Version="3.0.0"

4 SenderDomain="agr.nl"

5 RecipientDomain="dso.nl"

6 TimeStamp="2021-10-29T06:54:36.8868538Z"

7 MessageID="338ed243-5517-4400-962e-2b7b812c468c"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 ServiceType="CBC"

10 ISP-Duration="PT15M"

11 TimeZone="Europe/Amsterdam"

12 Period="2021-10-30"

13 CongestionPoint="ean.265987182507322951"

Example of the same FlexOffer message signed with the ACC key:

 Unsolicited FlexOffer messages are rejected by GOPACS. There must always be a preceding FlexRequest.

 At most 1 FlexOffer message may be sent as part of a conversation. All successive FlexOffer messages will be rejected by GOPACS.

Other attributes like Period, CongestionPoint, ContractID, etc. must be equal to the original FlexRequest.

FlexOfferResponse

Example FlexOfferResponse:

FlexOrder (for CLC)

Example of a FlexOrder message for a CLC contract, where the off-take transport capacity is limited to 50 MW (the original contracted transport capacity is100 MW):

14 ExpirationDateTime="2021-10-29T10:30:00Z"

15 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"

16 ContractID="A-AA-A-12345"

17 BaselineReference=""

18 Currency="EUR">

19 <OfferOption OptionReference="ba40a5f8-849b-4fe6-958f-e628a1653558"

20 Price="0.00">

21 <ISP Start="58" Duration="1" Power="50000000"/>

22 <ISP Start="59" Duration="1" Power="50000000"/>

23 <ISP Start="60" Duration="1" Power="50000000"/>

24 <ISP Start="61" Duration="1" Power="50000000"/>

25 </OfferOption>

26 </FlexOffer>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"

3 Body="whfSzCmP9Oml2y/6lfz/7a6hRvz7Am5waAwmtKT52kbEG9OhqHTj4DisCRNnmGHrmDjAsq6AyNB/YG+gDnZ5BjxGbGV4T2ZmZXINCiAgICAgICAgVmVyc2lvbj0iMy4w

D-PrognosisMessageID Ignored.

BaselineReference Ignored.

Currency Must be EUR .

Price Must be 0.00 (for now). Must comply with ISO 4217

0.00 , 0.0 and 0 are all allowed and considered equal in the GOPACS implementation.

OfferOption Exactly 1 OfferOption element is expected.

OfferOption.MinActivatio

nFactor

Optional. Ignored.

ISP.Power Depending on the contractual agreements between AGR and DSO the Power either is equal to what has been requested in the FlexRequest or

it can deviate.

In the case of a limitation on production, Power refers to the MinPower attribute of the ISP . In case the consumption is limited, Power refers to

the MaxPower attribute.

See ISPs.

It is allowed to send an offer on a subset of the requested ISPs.

Attribute/Element

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexOfferResponse

3 Version="3.0.0"

4 SenderDomain="dso.nl"

5 RecipientDomain="arg.nl"

6 TimeStamp="2021-10-29T06:54:36.4437962Z"

7 MessageID = UUID

8 ConversationID = UUID

9 FlexOfferMessageID = UUID

10 Result = ("Accepted" | "Rejected")

11 RejectionReason = String (Only if Result = "Rejected")

12 />

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexOrder

3 Version="3.0.0"

https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/ISO_4217

FlexOrder (for TDTR)

This requires version 3.1.0.

Example of a FlexOrder message for a TDTR contract, where the transport capacity is limited to 50 MW (the original contracted transport capacity is 70 MW):

4 SenderDomain="dso.nl"

5 RecipientDomain="agr.nl"

6 TimeStamp="2021-10-29T06:55:36.518Z"

7 MessageID="dc0f19c4-3835-4753-8f0c-0319d6642fbb"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 ServiceType="CBC"

10 ISP-Duration="PT15M"

11 TimeZone="Europe/Amsterdam"

12 Period="2021-10-30"

13 CongestionPoint="ean.265987182507322951"

14 FlexOfferMessageID="338ed243-5517-4400-962e-2b7b812c468c"

15 ContractID="A-AA-A-12345"

16 Price="0.00"

17 Currency="EUR"

18 OrderReference="None">

19 <ISP Start="58" Duration="1" Power="50000000/>

20 <ISP Start="59" Duration="1" Power="50000000" />

21 <ISP Start="60" Duration="1" Power="50000000"/>

22 <ISP Start="61" Duration="1" Power="50000000"/>

23 </FlexOrder>

ServiceType CBC

Currency Must be EUR .

Price Must equal the Price in the FlexOffer.

OrderReference May be filled by the calling grid company for settlement process.

If the grid operator is using GOPACS for UFTP, and they start a request from the GUI, this field is filled with a generated UUID.

ISP Currently GOPACS orders exactly what was offered (if on behalf of a Grid Company) - including ISPs and min activation factor.

ISP.Power Depending on the contractual agreements between AGR and DSO the Power either is equal to what has been requested in the FlexRequest

or it can deviate.

In the case of a limitation on production, power refers to the MinPower attribute of the FlexRequest . In case the consumption is limited,

power refers to the MaxPower attribute. See ISPs.

Attribute/Element

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexOrder

3 Version="3.1.0"

4 SenderDomain="dso.nl"

5 RecipientDomain="agr.nl"

6 TimeStamp="2021-10-29T06:55:36.518Z"

7 MessageID="dc0f19c4-3835-4753-8f0c-0319d6642fbb"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 ServiceType="TDTR"

10 ISP-Duration="PT15M"

11 TimeZone="Europe/Amsterdam"

12 Period="2021-10-30"

13 CongestionPoint="ean.265987182507322951"

14 ContractID="0000001"

15 Price="0.00"

16 Currency="EUR"

17 OrderReference="None">

18 <ISP Start="58" Duration="1" Power="50000000"/>

19 <ISP Start="59" Duration="1" Power="50000000"/>

20 <ISP Start="60" Duration="1" Power="50000000"/>

21 <ISP Start="61" Duration="1" Power="50000000"/>

22 </FlexOrder>

Version Must be 3.1.0 for ATR.

ServiceType Type of ATR contract.

Attribute/Element

FlexOrderResponse

Example FlexOrderResponse:

Must Run / CSC

Contracts

Contracts must be registered in GOPACS before calling them. The ContractID is the identifying attribute e.g. T-CA-I-12345.

Note: If a connection has both a CBC and a Must Run contract then both must have a unique ContractID.

MVP: leave fees empty (or 0) as currently only ‘limitationʼ fees can be registered.

Differences in contract registration compared to CBC:

Change terminology e.g. ‘minimum transport capacityʼ to be more correct for both CBC and CSC contracts: ‘steerable capacityʼ We must avoid the terms minimum and

maximum because they differ per context.

Max #calls/hours/MWh per time unit

 Do we need to account these hours similar to ATR?

UFTP messages

Grid operator may send a periodic message to indicate the need for must run for the next day. Proposal: to also use FlexRequest for this. This could also be done with

the (not yet used) FlexReservationUpdate ?

Must-Run consumption contract:

FlexRequest

ServiceType: CSC? tbd MVP: allowed to be left empty

Period

ContractID Unique number of the ATR contract.

Currency Must be EUR .

Price Must be 0.00 . But is ignored for now.

OrderReference May be filled by the calling grid company for settlement process.

ISP ISPs that are to be limited under the contract. See ISPs of FlexRequest .

ISP.Power See ISPs.

TDTR Time-bounded transport right (tijdsduurgebonden transportright)

NFA Non firm transport right (non-firm ATO)

ServiceType

An “Accepted” response from the Trading Company means that there is a binding agreement.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FlexOrderResponse

3 Version = "3.0.0"

4 SenderDomain = "dso.nl"

5 RecipientDomain = "arg.nl"

6 TimeStamp = "2021-10-29T06:54:36.4437962Z"

7 MessageID = UUID

8 ConversationID = UUID

9 FlexOrderMessageID = UUID

10 Result = ("Accepted" | "Rejected")

11 RejectionReason = String (Only if Result = "Rejected")

12 />

Proposed, not decided yet.

ExpirationDateTime: tbd

ISP:

Disposition: REQUESTED

MinPower: Positive value, the “at least” limit, may be 0 to indicate there is no must run expected

MaxPower: Positive value, usually the original contracted transport capacity

FlexRequestResponse

FlexOffer:

ISP:

Power: Value between MinPower and MaxPower from the FlexRequest. This means the plant CAN take at least Power from the grid.

FlexOfferResponse

FlexOrder:

ServiceType: same as in FlexRequest, only if AGR supports 3.1.0 or later

ISP:

Power: MinPower from FlexRequest. This means the plant MUST take at least Power from the grid.

FlexOrderResponse: agreement is reached

Must-Run production contract:

FlexRequest, same as above, except:

ISP:

MinPower: Negative value, usually the original contracted transport capacity

MaxPower: Negative value, the “at least” limit, may be 0 to indicate there is no must run expected

FlexRequestResponse, same as above

FlexOffer:

Power: Value between MinPower and MaxPower from the FlexRequest. This means the plant CAN feed at least Power into the grid.

FlexOfferResponse, same as above

FlexOrder:

ServiceType: same as in FlexRequest, only if AGR supports 3.1.0 or later

ISP:

Power: = MaxPower from FlexRequest. This means the plant MUST feed at least Power into the grid.

FlexOrderResponse: same as above

Validations

Because steering needs more variables and has more considerations as compared to limitation, we need to validate more constraints when calling: e.g. time between

calls, minimum length.

 Is GOPACS going to be the ‘gate keeperʼ? If so, we need to have a technical way of validating and also reporting validation errors back to the grid operator. Currently

Shapeshifter may or may not support this correctly. Also it brings more responsibility to GOPACS: can and will GOPACS do this. Any validations need to be aligned across

grid operators. Any changes need to be coordinated. GOPACS could provide all the necessary data for validation, but leave the responsiblity at the grid operator.

Testing receiving and sending flex messages

Acceptance environment

On the acceptance environment only, we have created a testing option to test whether your UFTP implementation can receive and send flex messages. With your trading

company account you can trigger a flex request, which will be sent to your endpoint. Please refer to the manual Testing receiving and sending flex messages by UFTP

API on Documents and manuals - GOPACS.

Production environment

After you have completed your testing on the Acceptance environment successfully, you might want to check your environment specific UFTP settings for the Production

environment. The UFTP protocol provides the TestMessage and TestMessageResponse message types for testing purposes. Both are Supported by the clc-message-

broker. They can be used to test your UFTP settings on the Production environment

Testing sending messages and receiving a response message

If a TestMessage is sent to the clc-message-broker with a recipient that is using GOPACS for UFTP, a TestMessageResponse will be sent back automatically.

https://www.gopacs.eu/en/documents-and-manuals/

Test receiving messages and responding with a response message

To test receiving a TestMessage and responding with a TestMessageResponse you can ask your grid company to send a TestMessage with your uftp implementation as

recipient. The clc-message-broker will then forward this test message to your uftp implementation.

GOPACS implementation specifics

 FlexOfferRevocation not supported yet

 FlexRequest revisions not supported yet

 Other message types are not supported yet

 A duplicate MessageID is immediately responded to with a 400 Bad Request and not a 200 OK followed by “Rejected” response as described in the specification!

 MinPower, MaxPower and Power are implemented as absolute values.

 After a 200 OK is returned, a received message is immediately processed by GOPACS. An accepted or rejected response is sent back almost instantaneously.

 The user receives realtime email notifications when a FlexRequest, FlexOffer or FlexOrder is received, rejected or failed to deliver.

 An outgoing UFTP message is retried every 3 minutes for a maximum of 5 tries. After that, the user and GOPACS DevOps team are notified of a failure to deliver.

Specifically on a 400 Bad Request, a message is not retried.

 Typically there will be at most 15 mins between FlexRequest and FlexOrder.

