GOPACS

Flex trading with Capacity Steering Contracts (CSC / CLC) using UFTP messages

Last updated: 07-11-2025

GOPACS supports flex trading with capacity Steering Contracts and alternative non-firm transport rights such as TDTR/VVTR through the exchange of
Shapeshifter UFTP messages. The implementation must be compliant to the Shapeshifter UFTP specification version 3.0.0 (for TDTR and
VVTR, 3.1.0 is required), with some restrictions which are described separately in this document.

@ Note, CSC is the new name for CLC (Capacity Limiting Contracts, NL: CBC / Capaciteitsbeperkende contracten). Where we write CSC, you
can also read CLC.

Table of contents

https://github.com/shapeshifter/shapeshifter-specification

«c message flow

This requires minimum version 3.0.0, but some improvements are made in 3.1.0. Implementations should adopt version 3.1.0 as soon as possible.
Overview of the GOPACS and UFTP message exchange for CSC contracts. The part where the URL and the public key is retrieved, is GOPACS specific.

Currently, a CSC call/activation (CSC-afroep) uses the following message flow, where each message request must be first responded to with
a 200 OK response before sending back the next message type:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexRequest message is sent by the grid operator to the trading company, requesting a certain amount of flexibility.

3. FlexRequestResponse message is sent by the tading company o the grid operator, acknowledging the receival of the request.

4. Flex0ffer message is sent by the trading company to the grid operator
2 The FlexO0ffer must have the same ISPs and capacities as the FlexRequest , since in the current implementation, there is no
option to actually do an offer and adjust any values of the call.

b. The price field is not used yet since all pricing is determined by the contract, there is currently no price negotiation.
s. FlexOfferResponse message is sent by the grid operator to the trading company, acknowledging the receival of the offer.
6. FlexO0rder message is sent by the grid operator to the trading company, to procure the flexibility.
7. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.
8. The call/activation (afroep) is now completed.
@ We acknowledge that for the current limited used of the UFTP protocol, the full flow of this message sequence would not be needed for flex

trading, but the full message flow is implemented to be prepared for the future where offers and price negotiation wiit most probably be added
to the functionalities.

For a readable version of the above diagram, please check the support documents sections.

GOPACS

TDTR/VVTR message flow

This requires version 3.1.0.
Currently, a call (afroep) of TDTR/VVTR contracts uses the following message flow:
1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).
2. FlexO0rder message is sent by the grid operator to the trading company, to procure the flexibility.
3. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.
4.The call (afroep) is now completed.
There is no negotiation phase where a FlexRequest and FlexOffer are exchanged.

GOPACS

Message broker

The UFTP protocol allows direct communication between grid operators and trading companies. However, for the sake of monitoring and
reporting, UFTP messages should be communicated via the GOPACS UFTP Message Broker. The message broker will forward the messages

to the specified UFTP recipient. The message broker is does not validate the messages. Validation needs to be done by the recipients themselves.

GOPACS

Open source library
To aid in building a compliant implementation GOPACS has built an open source library: https://github.com/shapeshifter/shapeshifter-library.

When implementing the protocol, make sure the implementation is compliant to the GOPACS specifications as described in this document. All
UFTP traffic must be uniform in order to make sure that every participant is able to communicate with each other.

GOPACS uses (in this documentation) the term Trading Company for every participant that has a contract with the Grid Company. In the UFTP
specification the term AGR (aggregator) is used, and in some Capacity Steering Contracts the term CSP is used.

https://github.com/shapeshifter/shapeshifter-library

GOPACS environments

https://app.acc.gopacs.eu

GOPACS

https://app.gopacs.eu

https://clc-message-broker.acc.gopacs-
services.eu/shapeshifter/api/v3/message

https://clc-message-broker.gopacs-
services.eu/shapeshifter/api/v3/message

https://clc-message-broker.acc.gopacs-
services.eu/v2/participants/

https://clc-message-broker.gopacs-
services.eu/v2/participants/

@ Swagger Ul @ Swagger Ul
3.75.32.104 3.121132.49
3.77.164.86
35.158.231.79 3.76:13011

3.78.82.175

Sign-up for GOPACS

Sign-up for GOPACS

https://auth.acc.gopacs-
services.eu/realms/gopacs/protocol/openid-
connect/token

https://auth.gopacs-
services.eu/realms/gopacs/protocol/openid-
connect/token

https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://app.acc.gopacs.eu/
https://app.gopacs.eu/
https://app.acc.gopacs.eu/signup
https://app.gopacs.eu/signup
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token

Getting started

Summary
To set up for using UFTP messages for flex trading, perform de following steps (not necessarily in this order) which are described below:

1. Account Setup for the GOPACS Application

2.Set up an API client

3.Enter your company details for UFTP and OAuth2.0 on the GOPACS Application
4.Obtaining a bearer token

s. Implement UFTP endpoint

6. Test implementation and settings on the GOPACS Acceptance environment

Account Setup for the GOPACS Application
For New CSPs or Affiliates

If you are a new CSP or affiliate (aangeslotene), you can create a company account with user account(s) yourself if you don't already have
one. Please note that each environment requires a separate account—accounts are not shared across environments.

After completing the sign-up form and accepting the terms, your request will be sent to a grid operator for approval. Once approved, you will
receive an email with instructions to finalize your account setup. Only then will you be able to log in to the GOPACS application.

Set up an API client
After signing up to GOPACS, you need to create at least one API client to authenticate your company on API requests:

1.Log in to the GOPACS GUI as company admin
2.Navigate to ‘API clients’ ACC: https://app.acc.gopacs.eu/api-clients or PRD: https://app.gopacs.eu/api-clients
GOPACS = € (a3
— API clients [o3

b

Er zljn nog geen AP clients

{ o b

7 g

38 4 e

3.Create a new API client on this page

De API client is aangemaakt

Kanpssar el bl sl bisens il e gps
werles: moet|e ceze S| clentyenuiderer on 2an neuwe 3

i et

o

Haam Tzadmin

bt °
TearAn

Cilert o

s ™
[
i -

4. Store the client ID and client secret somewhere secure (e.g. secrets manager software). Note that the client secret cannot be viewed
again.

Enter your company details for UFTP and OAuth2.0 on the GOPACS Application

Please refer to the manual Company settings for participating in CLC (Capacity Limiting Contracts) on Documents and manuals - GOPACS

Obtaining a Bearer token
Use the OAuth2 client credentials flow to obtain a Bearer token:
1. Configure an OAuth2 client to use the GOPACS OAuth2 token endpoint (see the table above)
2. Configure the client ID and client secret of the API client created via the GOPACS GUI
3. Perform the OAuth2 client credentials flow
4. A Bearer token will be returned (access token) which will be valid for a limited time (usually 5 minutes)
s.Include the Bearer token in each HTTP request to the GOPACS API
6. Refresh the Bearer token in time by performing the same flow again

Implement UFTP endpoint

As a Trading Company you need to have an implementation of the UFTP protocol for sending and receiving messages t0 and from grld operators by API. To receive UFTP messages you
need to expose an endpoint compliant to the Shapeshifter UFTP specification, that is ready to accept UFTP messages from GOPACS.

@ NB. Itis also possible to make use of the GOPACS UI to send and receive UFTP Flex messages instead if using an API implementation
(Please refer to the manual Flex trading with Capacity Limiting Contracts using the GOPACS Application).

https://app.acc.gopacs.eu/api-clients
https://app.gopacs.eu/api-clients
https://www.gopacs.eu/en/documents-and-manuals/
https://oauth.net/2/grant-types/client-credentials/

GOPACS

To make sure that your implementation and settings are correct, please first test on the GOPACS Acceptance environment.

Test implementation and settings on the GOPACS Acceptance environment

Please refer to the manual Testing sending and receiving flex messages by the UFTP API on Documents and manuals - GOPACS

https://www.gopacs.eu/en/documents-and-manuals/

GOPACS

GOPACS on behalf of a Grid Company or Trading Company

If a Grid Company or Trading Company doesn’t have their own UFTP API, they can use the GOPACS platform (# Homepage - Goracs) to send and
receive messages on their behalf. In this case, the UFTP messages are delivered to a GOPACS endpoint and GOPACS responds on behalf of
that participant.

If GOPACS sends a message on behalf of a participant, the SenderDomain is always the UFTP domain of the actual (original) Grid Company or
Trading Company, not GOPACS.

https://gopacs.eu/
https://gopacs.eu/

GOPACS

Participant API (‘'Address book')

DNS discovery as described in the UFTP specification is currently not supported by GOPACS.
GOPACS provides an alternative API for discovery of UFTP participant information: the Participant API.

Introduction on the Participant API

There are currently two endpoints for the discovery of UFTP Participant information;
1.Search on EAN and UFTP Role
2.Search on Domain Name and UFTP Role.

When using the information retrieved from the participant API, please know that it does not matter whether the company with which you are
communicating on flex trading uses its own UFTP implementation or the GOPACS application. You need to always use the received UFTP
participant information for that company for sending the flex message; it will always contain the GOPACS CLC message broker endpoint. The
CLC message broker will then determine whether to send the message to the recipients UFTP endpoint or to the GOPACS application.

Search on EAN and UFTP Role

You can retrieve the participant information by searching on the EAN of the contracted grid connection and the UFTP role of the participant
(DSO or AGR). As there may be multiple trading companies/aggregators on one grid connection, the response is a list of participants.

Example Participant API request:

1 GET /v2/participants/DSO?contractedEan=123456789012345678 HTTP/1.1
2 Accept: application/json

Example Participant API response:

|

HTTP/1.1 200 OK
Content-Type: application/json

[
{
"domain": "example.com",
"publicKey": "VFHpQ4B71g0KrVIAG+HK1zQctr1J3zjkK4BY GK79E+c=",
"endpoint": "https://clc- ge-broker.gopacs-services. i i
}
1

SO®ND U A WN

NB! Since we actively encourage to let all UFTP message go through the CLC Message Broker for reporting purposes, the returned participant
‘endpoint’ is always the CLC Message Broker endpoint.

Response Status

200 ok (note: if no participants could be found, an empty list is returned with HTTP Status 200)

400 EAN is not 18 characters wide, or UftpRole isnot AGR or DSO (CRO is not supported)

Search on Domain Name and UFTP Role

This is typically used to verify and decrypt the payload when receiving a message.

o GOPACS also provides a v1/participants endpoint, but this API endpoint has been marked as deprecated, and will be removed in a future release; we strongly advise you stop using this endpoint, and instead use the v2

endpoint instead.

Example Participant API request:

1 GET /v2/participants/DSO/example.com HTTP/1.1
2 Accept: application/json

Example Participant API response:

HTTP/1.1 200 OK
Content-Type: application/json

"domain": "example.com",
"publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BY GK79E+c=",
"endpoint": "https://uftp.example. i

1
2
8
411
5
6
7
8}

Response statuses

200 ok
400 uftpRole isnot AGR or DSO (CRO is not supported)
404 Participant not found for role + domain name.

ISPs

Certain message types such as FlexRequest, FlexOffer and FlexOrder contain ISPs: Imbalance Settlement Periods.

While the Shapeshifter UFTP specification allows to include not only the ISPs that are requested, but also those that are available (not being
steered), GOPACS currently only expects the ISPs that are to be limited under the contract.

ISP Duration

Currently the ISP duration supported is always 15 minutes.

ISP-Duration Required. Must be PT15M

ISP Start

First ISP of the day is 1. 00:00:00 (inclusive) until 00:15:00 (exclusive)

Second ISP of the day is 2. 00:15:00 (inclusive) until 00:30:00 (exclusive)

Last ISP of the day is 96 or 100 or 92. 23:45:00 (inclusive) until 00:00:00 the next day (exclusive)

ISPs and Daylight Saving time
ISPs with respect to Daylight Saving Time (DST), assuming Europe/Amsterdam and a 15 minute ISP duration:

. On the last Sunday of March when the clock goes from CET (standard) to CEST (summer), the number of ISPs will be 92:
ISP 1: 00:00-00:15
ISP 2: 00:15-00:30
ISP 3: 00:30-00:45
ISP 4: 00:45-01:00
ISP 5: 01:00-01:15
ISP 6: 01:15-01:30
ISP 7: 01:30-01:45
ISP 8: 01:45-03:00
ISP 9: 03:00-03:15
etc.
ISP 92: 23:45-00:00
. On the last Sunday of October when the clock goes from CEST (summer) to CET (standard), the number of ISPs will be 100.
ISP 1: 00:00-00:15
ISP 2: 00:15-00:30
ISP 3: 00:30-00:45
ISP 4: 00:45-01:00
ISP 5: 01:00-01:15
ISP 6: 01:15-01:30
ISP 7: 01:30-01:45
ISP 8: 01:45-02:00
ISP 9: 02:00-02:15
ISP 10: 02:15-02:30
ISP 11: 02:30-02:45
ISP 12: 02:45-02:00
ISP 13: 02:00-02:15
etc.
ISP 100: 23:45-00:00
- On any other day, the number of ISPs will be 96.

ISP (Min, Max) Power

A\ important notice: This is the absolute capacity in watts, NOt the deviation as stated in the Shapeshifter specification. This might change when V4.x of the
Shapeshifter specification is implemented.

. The GUI shows the power values in MW
- In the UFTP messages, power values are in W

Depending on the capacity steering direction:

* When limiting feed-in:
o MaxPower =0

- MinPower isthe maximum allowed feed in as a negative number. E.g. when limiting the feed in to 3 MW, MinPower =-3000000.
If no feed in is allowed at all, MinPower =0

o MinPoweI must be a multiple of -1000W (in other words, the limitation is specified in steps of TkW) and must also match the steps
defined in the contract.

« When limiting offtake:
o MinPower =0
. MaxPower is a positive number specifying the maximum allowed power offtake in Watts.
. MaxPower mustbe a multiple of T1000W.

Baseline (proposal, not supported yet)
@ This is a proposal and is not supported yet.

ISP.DefaultBaseline Capacity in the default situation that would occur if no flexibility were activated. This is usually equal to the contracted transport capacity (GTV).

Not supported yet Example: the GTV is 100 MW. No flexibility is activated yet: the DefaultBaseline i o0 mw. i mwoi flexibility was already activated: the
DefaultBaseline issinioomw

This is a proposal and is not supported yet.

GOPACS

ISP.Baseline Capacity baseline before this flexibility was requested. If flex capacity was activated earlier, in a different conversation, then this is the capacity with the deviation applied.

Not supported yet Example: the D@ FAULTBASE@11NE is100 Mw. An carlier conversation has activated 25 MW of flexibility. When this FLEXREQUEST s sent to request the
activation of another 20 MW of flexibility, the BAS@1LI1NE@ wouldbe 75 Mw and the MAXPOWEX would be 55 Mw.

This is a proposal and is not supported yet.

SignedMessage

Example of a SignedMessage HTTP request (some headers omitted for clarity):

POST /shapeshifter/api/v3/message HTTP/1.1
Accept: application/json (or */* or omit)
Authorization: Bearer ...

Content-Type: text/xml

<SignedMessage
SenderDomain="dso.nl"

1
2
3
4
5
6 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
7
8
9 SenderRole="DSO"

10

Body="..."/>

SenderDomain Grid Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in GOPACS, prior to
receiving or sending messages.
When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderDomain is equal
to the domain of actual UFTP participant.

SenderRole Must be DSO for a Grid Company.
Mustbe AGR for a Trading Company.
Other values are not supported.
GOPACS is not considered a ‘party’ in the UFTP exchange and therefore does not have a ‘role’.
When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderRole is equal to
the role of actual UFTP participant.

Body Base64 encoded payload that will be decrypted using CXypto_sign_open (see 1 publickey signawres| Libsodium documentatio
n). GOPACS does not support sealing and unsealing of messages (just signing).
GOPACS uses the SenderDomain and SenderRole to lookup the public key that is used for verifying the signature of
the message.
Encryption-in-transit is covered by enforcing TLS connections.
Encryption-at-rest should be done using common security practices and tools by the implementing system.
GOPACS uses Lazysodium which is a Java wrapper over the Libsodium library.

Response statuses

200 Message has correct signature, was XSD valid and will be processed asynchronously.
400 Wrong content type

Technical XSD validation error (no functional validations yet)

Error during XML deserialization

401 Bearer token not provided or invalid.

Public key of sender not found or incorrect.

Message signature could not be verified with public key of sender.

403 Bearer token not authorized to perform this request.

5xx Unexpected (temporary) error on GOPACS side.

Message types with examples and field specifications

FlexRequest
Sent by the Grid Company to the Trading Company.
Example of a FlexRequest message for a Capacity Steering Contract, where the contracted capacity is 100 MW, the requested limit is 50 MW:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FlexRequest
Version="3.0.0"
SenderDomain="dso.nl"
RecipientDomain="agr.nl"
TimeStamp="2021-10-29T06:54:26.861Z"

U A WN -

https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://github.com/terl/lazysodium-java
https://github.com/jedisct1/libsodium

GOPACS

7 MessagelD="d3ae4836-55b1-4084-b54e-34107b22648¢"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 ServiceType="CBC"
10 ISP-Duration="PT15M"

11 TimeZone="Europe/Amsterdam"
12/ Period="2021-10-30"
13 ContractID="A-AA-A-12345"
14 CongestionPoint="ean.265987182507322951"
15 Revision="1"
16 ExpirationDateTime="2021-10-29T22:15:00.0000Z">
17 <ISP Start="48" Duration: Disposition="Requested" MinPower="0" MaxPower="50000000"/>
18 <ISP Start="49" Duration: Disposition="Requested" MinPower="0" MaxPower="50000000"/>
19 <ISP Start="50" Duration: Disposition="Requested" MinPower="0" MaxPowe! 0000000"/>
20 <ISP Start="51" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
21 </FlexRequest>

Example of the same FlexRequest message signed with the ACC key:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SignedMessage SenderDomain="dso.nl" SenderRole="DSO"
Body="SwGOfSad4bZ9ghmuQmm?7lvTkgDvF2F/dy1A3qqe7qkciiH/qyluXdAAxfV8+jqW8Gc91pcgMoYr8i
FUeDmIVIDjxGbGV4UmVxdWVzdAOKICAgICAgICBWZXJzaW9uPSIzLjAuMCINCiAgICAgICAgU2VuZGVyRG
9tY WIuPSJkc28ubmwiDQogICAgICAGIFIIY 2lwaW VudERVbWEpbj0iY WdyLm5sIgOKICAGICAGICBUaW 11
U3RhbXAI[jIwMjEtMTAtMjIUMDY 6NTQ6M;jYuODY xWiINCiAgICAgICAgTWVzc2FnZUIEPSJKM2FINDgzNi
0INWIXLTQwODQtYjU0ZS0zNDEwN2IyMjY 00GMiDQogICAgICAgIENvbnZlcnNhdGlvbkIEPSIOOGNKYzNk
Mi0INmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUzOGQiDQogICAgICAGIEITUC1EdXJhdGlvbj0iUFQxNU0IDQ
0gICAgICAIFRpbWVab251PSIFdXJveGUvVQW12dG VyZGFtIgOKICAgICAGICBQZXJpb2QajIwMjEtMTAL
MzAiDQogICAgICAgIENvbnRy Y WNOSUQIIKEtQUEtQSO0xMjMONSINCIAgICAgICAgQ29uZ2VzdGlvblBvaW
50PSJIY W4uM;jY 10Tg3MTgyNTA3MzIyOTUxIgOKICAgICAgICBSZXZpc2lvbj0iMSINCiAgICAgICAgRXhw
aXJhdGIvbkRhdGVUaW 11PSIyMDIXLTEWLTI5VDIyOjE10jAwLjAwMDBalj4NCiAgICA8SVNQIERpc3Bvc2
10aW9uPSJSZXF1ZXNOZWQIIE1pblBvd2VyPSIwliBNY XhQb3dlcj0OiNTAWMDAwWMDAIIFNOY XJOPSI0OCIg
RHVyY XRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc210aWIuPSISZXF1ZXNOZWQIIE1pblBvd2 VyPSIwli
BNYXhQb3dlcj0iNTAWMDAwWMDAIIFNOY XJOPSIOOSIgRHVyY XRpb249]jEiLz4NCiAgICA8SVNQIERpc3Bv
€210aW9uPSJSZXF1ZXN0ZWQIIE1pblBvd2VyPSIwliBNY XhQb3dlcjOiNTAWMDAWMDAIIFNOY XJOPSIIMC
IgRHVyY XRpb2491jEiLz4NCiAgICA8SVNQIERpc3Bvc210aW9uPSISZXF1ZXNOZWQIIE1pblBvd2VyPSTw
TiIBNYXhQb3dlcjoiNTAWMDAwWMDAIIFNOY XJOPSI1MSIgRHVyY XRpb249]jEiLz4NCjwvRmxleFJlcXVIc3Q+"/>

.
Bosvsoswms |

T
®Nonr oo~

All the validations from the UFTP specification apply. On top of that GOPACS has some additional restrictions with respect to the usage of
UFTP message for CSC:

Version Mustbe 3.0.0 (currently).

To enable receiving or sending messages, the Grid Company must log in to the GOPACS UI and configure with its
company details their UFTP domain, public key and endpoint.

SenderDomain

To enable receiving or sending messages, the Trading Company must log in to the GOPACS UI and configure with its
company details their UFTP domain, public key and endpoint.

RecipientDomain

TimeStamp Parsing supports different offsets and handles accordingly. The offset can be either in “+HH:mm:ss” format or “Z”.
GOPACS ignores the milliseconds part when parsing.
GOPACS always sends either a UTC timestamp (no offset and “Z” suffix) or a timestamp in the Europe/Amsterdam
timezone (offset +01:00 or +02:00 depending on DST).
The milliseconds part can be between 0 and 9 digits where the omitted digits are implied to be zero.

Revision Required. Must be 1 . Revisions are currently not supported yet.

ServiceType Optional. The ServiceType specifies which type of flexibility is being requested.

Note that ServiceType is still CBC instead of the new naming CSC .

CBC Capacity Limiting Contract (Capaciteitsbeperkingscontract)

ISP-Duration

Required. See ISPs.

TimeZone

Required. Must be Europe/Amsterdam

Period

Required. 4, The day of congestion. Format: YYYY-MM-DD always interpreted in Europe/Amsterdam time
zone. Any offset is ignored.

The message must be sent before 12:00:00 the day before Period.
Examples:

. If the message is received before 12:00:00, then the Period may be tomorrow or later.
. If the message is received after 12:00:00, then the Period must be the day after tomorrow or later.

ExpirationDateTime

A The expiration date time must be no later than 12:00:00 the day before the day of congestion (Period).

ContractID

Functional required. Typical format: A-AA-A-12345

Trading Company must log in to the GOPACS UI and register the CLC contract, prior to receiving or sending
messages.

CongestionPoint

ean.[0-9]{18}
Must be a known EAN of a preregistered CLC contract in GOPACS.

Does not have to be known as Grid Connection in GOPACS.

ISP

Required. See ISPs.

https://edsn.atlassian.net/wiki/spaces/GOPACS/pages/1157902090/Flex+trading+with+Capacity+Steering+Contracts+CSC+CLC+using+UFTP+messages#ISPs

GOPACS

ISP.Start Required. See ISPs.
ISP.Duration
ISP.Disposition Must be Requested See ISPs.
ISP.MinPower See ISPs.
ISP.MaxPower
FlexRequestResponse

Example FlexRequestResponse:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FlexRequestResponse
Version="3.0.0"
SenderDomain="agr.nl"
RecipientDomain="dso.nl"
TimeStamp="2021-10-29T06:54:36.4437962Z"
MessagelD="7f0f4e68-f842-4b92-911e-b26{85525067"
ConversationID="48cdc3d2-56¢0-436¢-8d5a-6f6cc3dc538d"
Result="Accepted"
FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648¢"/>

SOPVND U A WN -

Example of the same FlexRequestResponse message signed with the ACC key:

<?xml version="1.0" encoding="UTE-8" standalone="yes"?>
<SignedMessage SenderDomain="agr.nl" SenderRole="AGR"
Body="3fD4le5Jk6h7k6TQaEsJ4Vego1CXpA/1ztx1yaejldb0SnufscFZZy630EsUJFVM3Ihy0+3

1
2
3
4
5
6
7
8
8
0

VIWDcWORSLAnJATXxGbGV4UmVxdWVzdFJlc3BvbnNIDQogICAgICAgIFZlcnNpb2491jMuMC4wIg0K
ICAgICAgICBTZW5kZ XJEb21haW49ImFnci5ubCINCiAgICAgICAgUmVjaXBpZWS50RGItY WIuPSJkc
28ubmwiDQogICAgICAgIFRpbWVTdGFtcD0iMjAyMS0xMCOyOVQwNjolNDozNi4ONDM3OTYyWilNCi
AgICAgICAgTWVzc2FnZUIEPSI3ZjBmNGU20C1mODQyLTRIOTItOTEXZS1iMjZmODU1MjUwNjciDQo
gICAgICAgIENVbnZlcnNhdGIvbkIEPSIOOGNkYZNKkMi0O1NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUz
0GQIDQogICAgICAgIFJIc3VsdDOiQWN]ZXB0ZWQiDQogICAgICAGIEZsZXhSZXF1ZXNOTWVzc2FnZ

UIEPSJKM2FINDgzNi01NWIXLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

Or when it is rejected:

©CONDOU A WN =

10
1

Example of the same FlexRequestResponse message signed with the ACC key:

1
2
3
4
5
6
7
8
9
0
1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FlexRequestResponse
Version="3.0.0"
SenderDomain="aggregator.org"
RecipientDomain="uftp.dso.nl"
TimeStamp="2021-10-29T06:54:36.4437962Z"
MessagelD="7f0f4e68-f842-4b92-911e-b26{85525067"
ConversationID="48cdc3d2-56¢0-436c-8d5a-6f6cc3dc538d"
Result="Rejected"
RejectionReason="Reference Period mismatch"
FlexRequestMessagelD="d3ae4836-55b1-4084-b54e-34107b22648c"/>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
i SenderDomain=" org" SenderRole="AGR"
Body="+hM5FFliOQEpuMLwVpy6KKhb80xOtrCu//VhLY nhiJ AwZC8Eh743SPErLsPR9bpWTJdnuSfD

SY3UamQuafGVCzxGbGV4UmVxdWVzdFJlc3BvbnNIDQogI CAgICAgIFZIcnNpb2491jMuMC4wlgOKIC
AgICAgICBTZW5kZXJEb21haW49ImFnZ3J1Z2F0b31ub3Jnlg0KICAGICAgICBSZWNpcGlIbnREb21h
aW49InVmdHAuZHNVLmS5sIg0KICAGICAgICBUaW 11U3RhbX A9LIwMEtMTAMIUMDY6NTQ6MzYuND
QzNzk2MloiDQogICAgICAGIE 11c3NhZ2VIRDOIN2Y wZjRINjgtZjgOMi00Y jkyLTkxMWUtYjI2Zjg1
NTIIMDY3Ig0KICAgICAgICBDb252ZXJzY XRpb25JRD0INDhjZGMzZDItNTZjMC00MZZiLThkNWEtNm
Y2Y2MzZGM1MzhkIgOKICAgICAGICBSZXN1bHQIILlamVjdG VkIgOKICAgICAgICBSZWplY3Rpb25S
ZWFzb2491111ZmVyZW5jZSBQZXJpb2QgbWIzbWF0Y 2giDQogICAgICAGIEZsZXhSZXF1ZXNOTWVzc2
EnZUIEPSJKM2FINDgzNi01NWIXLTQwODQLYjU0ZS0zNDEWN2IyMjY00GMiLz4="/>

FlexOffer

Sent by the Trading Company to the Grid Company as answer to a FlexRequest.

Note: The FlexOffer message type does not have the field serviceType as FlexRequest and FlexOffer do. This is because it is not needed

on this message type.
Example of a FlexOffer message for a CSC contract:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2| <FlexOffer
3| Version="3.0.0"
4 SenderDomain="agr.nl"
5| RecipientDomain="dso.nl"
6 TimeStamp="2021-10-29T06:54:36.8868538Z"
7 38ed243-5517-4400-962e-2b7b812c468c"
8 "'48cdc3d2-56¢0-436c-8d5a-6f6cc3dc538d"
) ISP-Duration="PT15M"
10 TimeZone="Europe/Amsterdam"
11| Period="2021-10-30"
12 CongestionPoint="ean.265987182507322951"
13| ExpirationDateTime="2021-10-29T10:30:00Z"
14 FlexRequestMessagelD="d3ae4836-55b1-4084-b54e-34107b22648c"
15 ContractID="A-AA-A-12345"
16| BaselineReference=""
17 Currency="EUR">
18| <OfferOption OptionReference="ba40a5f8-849b-4fe6-958f-e628a1653558"
1K) Price="0.00">
20 <ISP Start='
21 <ISP Start="
22 <ISP Start="60" Duratiol
23 <ISP Start="61" Duratiol
24| </OfferOption>
25 </FlexOffer>

'50000000"/>
'50000000"/>
'50000000"/>
" Power="50000000"/>

Example of the same FlexOffer message signed with the ACC key:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"
8

GOPACS

Body="whfSzCmP9OmI2y/6lfz/7a6hRvz7 Am5waAwm{K T52kbEGIOhGHTj4DisCRNnmGHrmDjAsq6 AyNB/Y G+gDnZ5BjxGbGVAT2ZmZ X INCGIAgICAGICAgVmVyc2Ivbj0iMy4wLj AiDQogICAICAgIFNIb

A Unsolicited FlexOffer messages are rejected by GOPACS. There must always be a preceding FlexRequest.

A At most 1FlexOffer message may be sent as part of a conversation. All successive FlexOffer messages will be rejected by GOPACS (for

now).

D- Ignored.
PrognosisMessagel
D

BaselineReference Ignored.

Currency Mustbe EUR .

Price Mustbe .00 (for now). Must comply with w 150 4217

0.00, 0.0 and @ are all allowed and considered equal in the GOPACS implementation.

OfferOption J\ Exactly 1 OfferOption element is expected.

OfferOption.MinActiv | Optional. Ignored.
ationFactor

requested inthe FlexRequest or it can deviate.

See ISPs.

It is allowed to send an offer on a subset of the requested ISPs.

ISP.Power Depending on the contractual agreements between AGR and DSO the Powex either is equal to what has been

In the case of a limitation on production, POWeI refers tothe MinPower attribute of the ISP .In case the
consumption is limited, Powex refers to the MaxPowex attribute.

Other attributes like Period, CongestionPoint, ContractID, etc. must be equal to the original FlexRequest.

FlexOfferResponse

Example FlexOfferResponse:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOfferResponse
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="arg.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessagelD =UUID
8 ConversationID = UUID
9 FlexOfferMessagelD = UUID
10 Result = ("Accepted" | "Rejected")
11 RejectionReason = String (Only if Result = "Rejected")
12, />
FlexOrder (for CSC)

Example of a FlexOrder message for a CSC contract, where the off-take transport capacity is limited to 50 MW (ine original contracted transport capacity is100

MW):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<FlexOrder
Version="3.0.0"

TimeStamp="2021-10-29T06:55:36.518Z"
MessagelD="dc0f19c4-3835-4753-8f0c-0319d6642fbb"
Conversation]D="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"

9 ISP-Duration="PT15M"
10 TimeZone="Europe/Amsterdam"
11 Period="2021-10-30"
12| C i int="ean.265987182507322951"
13 FlexOfferMessagelD="338ed243-5517-4400-962e-2b7b812c468c"
14 ContractID="A-AA-A-12345"
i Price="0.00"
16 Currency="EUR"
17| OrderReference="None">
18 <ISP Start="58" Duration:
19 <ISP Start="59" Duration: Power="50000000" />
20 <ISP Start="60" Duratic 1" Power="50000000"/>
21 <ISP Start="61" Duration="1" Power="50000000"/>
22| </FlexOrder>

1
2
3
4
5 RecipientDomain="agr.nl"
6
7
8

" Power="50000000/>

ServiceType Optional for CSC. Either CBC or leave empty

Currency Mustbe EUR.

Price Must equal the Price in the FlexOffer.

OrderReference May be filled by the calling grid company for settlement process.
If the grid operator is using GOPACS for UFTP, and they start a request from the GUI, this field is filled with a
generated UUID.

https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/ISO_4217

GOPACS

ISP A\ Currently GOPACS orders exactly what was offered (if on behalf of a Grid Company) - including ISPs and min
activation factor.

ISP.Power Depending on the contractual agreements between AGR and DSO the Power either is equal to what has been

requested in the F1lexRequest orit can deviate.

In the case of a limitation on production, power refers to the MinPower attribute of the FlexRequest .Incase
the consumption is limited, power refers to the MaxPower attribute. See ISPs.

FlexOrder (for TDTR and VVTR)

This requires version 3.1.0.

Example of a FlexOrder message for a TDTR contract, where the transport capacity is limited to 50 MW (the original contracted transport
capacity is 70 MW):

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrder

3| Version="3.1.0"

4| SenderDomain="dso.nl"

5 RecipientDomain="agr.nl"

6/ Ti '2021-10-29T06:55:36.518Z"

7 MessagelD="dc0f19c4-3835-4753-8f0c-0319d6642fbb"

8 ConversationID="48cdc3d2-56c0-436c-8d5a-6{6cc3dc538d"
9 ServiceType="TDTR"

10 ISP-Duration="PT15M"

11 TimeZone="Europe/Amsterdam"

12| Period="2021-10-30"

13 CongestionPoint="ean.265987182507322951"

14 ContractID="0000001"

15 Price="0.00"

16 Currency="EUR"
17| OrderRefere m
18 <ISP Start='
19| <ISP Start='
20 <ISP Start=
21 <ISP Start="61"
22| </FlexOrder>

="1" Power="50000000"/>
" Power="50000000"/>
ower="50000000"/>
="1" Power="50000000"/>

Version Mustbe 3.1.0 for ATR.
ServiceType Type of ATR contract.
TDTR Time-bounded transport right (tijdsduurgebonden transportright)
VVTR Non firm transport right (Volledig Variabel Transportrecht)
ContractID Unique number of the ATR contract.
Currency Mustbe EUR.
Price Must be @.00 . Butis ignored for now.
OrderReference May be filled by the calling grid company for settlement process.
ISP ISPs that are to be limited under the contract. See ISPs of F1lexRequest .
ISP.Power See ISPs.
FlexOrderResponse

© An “Accepted” response from the Trading Company means that there is a binding agreement.

Example FlexOrderResponse:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrderResponse

3 Version ="3.0.0"

4 SenderDomain = "dso.nl"

5 RecipientDomain arg.nl"

6 TimeStamp = "2021-10-29T06:54:36.4437962Z"

7 MessagelD =UuID

8 ConversationID = UUID

9 FlexOrderMessagelD = UUID
10 Result = ("Accepted" | "Rejected")
11 RejectionReason = String (Only if Result = "Rejected")
12| />

CSC with “deployment” instead of “limitation” (under construction, not ready yet)

@ Functionality is under construction, not fully ready to be used yet.

Introduction

Next to flex trading for capacity limitation (limiting feed-in or off-take, NL: beperking), we are working on adding flex trading for capacity
deployment (forcing feed-in or off-take, NL: inzet).

Contracts
Contracts must be registered in GOPACS before calling them. The ContractID is the identifying attribute e.g. T-CA-I-12345.

Note: If a connection has both a Feed-In-congestion contract (invoedingscongestiecontract) and a Off-take-congestion contract
(afnamecongestiecontract), then both contracts must have a unique ContractID and be registered separately.

MVP: leave fees empty (or 0) as currently only ‘limitation’ fees can be registered.

Differences in contract registration compared to CLC (Capacity Limiting Contracts / Capaciteitsbeperkendcontract):
. The two contract types Production and Consumption are changed totwo newtypes Feed in congestion and Off
take congestion .Existing contracts will be migrated to these two new types.
- When activating (calling) these new contract types:

- Activatinga Feed in congestion contract can resultin two solutions: Feed in limitation and Off take
deployment
- Activatinga Off take congestion contract can resultin two solutions: 0ff take limitation and Feed in
deployment
. Some terminology in the contract data model changes to adjust to the new options with capacity steering direction deployment.

UFTP messages

UFTP message follow the same message flow for CSC as compared to the previous CLC.

Activating a Off take congestion contract for Feed in deployment :

- FlexRequest
o ServiceType: CSC? tbd MVP: allowed to be left empty

o Period
o ExpirationDateTime: tbd
o ISP:
- Disposition: REQUESTED
= MinPower: Positive value, the “at least” limit, may be O to indicate there is no must run expected
= MaxPower: Positive value, usually the original contracted transport capacity
- FlexRequestResponse
- FlexOffer:
o ISP:
- Power: Value between MinPower and MaxPower from the FlexRequest. This means the plant CAN take at least Power from the
grid.
- FlexOfferResponse
- FlexOrder:
o ServiceType: same as in FlexRequest, only if AGR supports 3.1.0 or later
o ISP:
- Power: Power from FlexOffer. This means the plant MUST take Power from the grid.

- FlexOrderResponse: agreement is reached

Activatinga Feed in congestion contractfor Off take deployment :

. FlexRequest, same as above, except:

o ISP:
= MinPower: Negative value, usually the original contracted transport capacity
- MaxPower: Negative value, the “at least” limit, may be O to indicate there is no must run expected
- FlexRequestResponse, same as above
- FlexOffer:
- Power: Value between MinPower and MaxPower from the FlexRequest. This means the plant CAN feed at least Power into the
grid.
- FlexOfferResponse, same as above
- FlexOrder:
- ServiceType: same as in FlexRequest, only if AGR supports 3.1.0 or later
o ISP:
= Power: = Power from FlexOffer. This means the plant MUST feed Power into the grid.

. FlexOrderResponse: same as above

Validations

Because steering needs more variables and has more considerations as compared to limitation, we need to validate more constraints when
calling: e.g. time between calls, minimum length.

€ Is GOPACS going to be the ‘gate keeper’? If so, we need to have a technical way of validating and also reporting validation errors back to
the grid operator. Currently Shapeshifter may or may not support this correctly. Also it brings more responsibility to GOPACS: can and will
GOPACS do this. Any validations need to be aligned across grid operators. Any changes need to be coordinated. GOPACS could provide all the
necessary data for validation, but leave the responsiblity at the grid operator.

Testing receiving and sending flex messages

Acceptance environment

On the acceptance environment only, we have created a testing option to test whether your UFTP implementation can receive and send flex
messages. With your trading company account you can trigger a flex request, which will be sent to your endpoint. Please refer to the manual
Testing receiving and sending flex messages by UFTP API on Documents and manuals - GOPACS.

Production environment

After you have completed your testing on the Acceptance environment successfully, you might want to check your environment specific UFTP
settings for the Production environment. The UFTP protocol provides the TestMessage and TestMessageResponse message
types for testing purposes. Both are Supported by the clc-message-broker. They can be used to test your UFTP settings on the Production
environment

Testing sending messages and receiving a response message

If a TestMessage is sent to the clc-message-broker with a recipient that is using GOPACS for UFTP,a TestMessageResponse will be
sent back automatically.

Test receiving messages and responding with a response message

To test receiving a TestMessage and responding with a TestvessageResponse you can ask your grid company to send a TestMessage with your uftp
implementation as recipient. The clc-message-broker will then forward this test message to your uftp implementation.

GOPACS implementation specifics

- €3 FlexOfferRevocation not supported yet
- {3 FlexRequest revisions not supported yet
«) Other message types are not supported yet

A A duplicate MessagelD is immediately responded to with a 400 Bad Request and not a 200 OK followed by “Rejected” response as
described in the specification!

A MinPower, MaxPower and Power are implemented as absolute values.

@ After a 200 OK is returned, a received message is immediately processed by GOPACS. An accepted or rejected response is sent back
almost instantaneously.

@ The user receives realtime email notifications when a FlexRequest, FlexOffer or FlexOrder is received, rejected or failed to deliver.

@ An outgoing UFTP message is retried every 3 minutes for a maximum of 5 tries. After that, the user and GOPACS DevOps team are notified
of a failure to deliver. Specifically on a 400 Bad Request, a message is not retried.

@ Typically there will be at most 15 mins between FlexRequest and FlexOrder.

https://www.gopacs.eu/en/documents-and-manuals/

