
Flex trading with Capacity Steering Contracts (CSC / CLC) using UFTP messages

Last updated: 07-11-2025

GOPACS supports flex trading with Capacity Steering Contracts and alternative non-firm transport rights such as TDTR/VVTR through the exchange of

Shapeshifter UFTP messages. The implementation must be compliant to the version 3.0.0 (for TDTR and

VVTR, 3.1.0 is required), with some restrictions which are described separately in this document.

 Note, CSC is the new name for CLC (Capacity Limiting Contracts, NL: CBC / Capaciteitsbeperkende contracten). Where we write CSC, you

can also read CLC.

Table of contents

Shapeshifter UFTP specification

https://github.com/shapeshifter/shapeshifter-specification

CSC message flow

This requires minimum version 3.0.0, but some improvements are made in 3.1.0. Implementations should adopt version 3.1.0 as soon as possible.

Overview of the GOPACS and UFTP message exchange for CSC contracts. The part where the URL and the public key is retrieved, is GOPACS specific.

Currently, a CSC call/activation (CSC-afroep) uses the following message flow, where each message request must be first responded to with

a 200 OK response before sending back the next message type:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexRequest message is sent by the grid operator to the trading company, requesting a certain amount of flexibility.

3. FlexRequestResponse message is sent by the trading company to the grid operator, acknowledging the receival of the request.

4. FlexOffer message is sent by the trading company to the grid operator

a. The FlexOffer must have the same ISPs and capacities as the FlexRequest , since in the current implementation, there is no

option to actually do an offer and adjust any values of the call.

b. The price field is not used yet since all pricing is determined by the contract, there is currently no price negotiation.

5. FlexOfferResponse message is sent by the grid operator to the trading company, acknowledging the receival of the offer.

6. FlexOrder message is sent by the grid operator to the trading company, to procure the flexibility.

7. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.

8. The call/activation (afroep) is now completed.

 We acknowledge that for the current limited used of the UFTP protocol, the full flow of this message sequence would not be needed for flex

trading, but the full message flow is implemented to be prepared for the future where offers and price negotiation will most probably be added

to the functionalities.

For a readable version of the above diagram, please check the support documents sections.

TDTR/VVTR message flow

This requires version 3.1.0.

Currently, a call (afroep) of TDTR/VVTR contracts uses the following message flow:

1. Grid operator calculates prognosis, expects flexibility is needed and initiates a call (afroep).

2. FlexOrder message is sent by the grid operator to the trading company, to procure the flexibility.

3. FlexOrderResponse message is sent by the trading company to the grid operator, acknowledging the receival of the order.

4. The call (afroep) is now completed.

There is no negotiation phase where a FlexRequest and FlexOffer are exchanged.

Message broker

The UFTP protocol allows direct communication between grid operators and trading companies. However, for the sake of monitoring and

reporting, UFTP messages should be communicated via the GOPACS UFTP Message Broker. The message broker will forward the messages

to the specified UFTP recipient. The message broker is does not validate the messages. Validation needs to be done by the recipients themselves.

Open source library

To aid in building a compliant implementation GOPACS has built an open source library:

When implementing the protocol, make sure the implementation is compliant to the GOPACS specifications as described in this document. All

UFTP traffic must be uniform in order to make sure that every participant is able to communicate with each other.

GOPACS uses (in this documentation) the term Trading Company for every participant that has a contract with the Grid Company. In the UFTP

specification the term AGR (aggregator) is used, and in some Capacity Steering Contracts the term CSP is used.

https://github.com/shapeshifter/shapeshifter-library

https://github.com/shapeshifter/shapeshifter-library

GOPACS environments

GOPACS UI

UFTP endpoint

This is where you send your

messages to

https://clc-message-broker.acc.gopacs-

services.eu/shapeshifter/api/v3/message

https://clc-message-broker.gopacs-

services.eu/shapeshifter/api/v3/message

Participant API (address

book)

https://clc-message-broker.acc.gopacs-

services.eu/v2/participants/

https://clc-message-broker.gopacs-

services.eu/v2/participants/

API documentation Swagger UI Swagger UI

Public IPs of GOPACS (for IP

whitelisting)

3.75.32.104

3.77.164.86

35.158.231.79

3.121.132.49

3.76.130.111

3.78.82.175

Sign-up link for new CSPs

OAuth2 token endpoint

Environment ACC (suggested for testing integrations) PRD

https://app.acc.gopacs.eu https://app.gopacs.eu

Sign-up for GOPACS Sign-up for GOPACS

https://auth.acc.gopacs-

services.eu/realms/gopacs/protocol/openid-

connect/token

https://auth.gopacs-

services.eu/realms/gopacs/protocol/openid-

connect/token

https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.acc.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://clc-message-broker.gopacs-services.eu/swagger-ui/index.html
https://app.acc.gopacs.eu/
https://app.gopacs.eu/
https://app.acc.gopacs.eu/signup
https://app.gopacs.eu/signup
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.acc.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token
https://auth.gopacs-services.eu/realms/gopacs/protocol/openid-connect/token

Getting started

Summary

To set up for using UFTP messages for flex trading, perform de following steps (not necessarily in this order) which are described below:

1. Account Setup for the GOPACS Application

2. Set up an API client

3. Enter your company details for UFTP and OAuth2.0 on the GOPACS Application

4. Obtaining a bearer token

5. Implement UFTP endpoint

6. Test implementation and settings on the GOPACS Acceptance environment

Account Setup for the GOPACS Application

For New CSPs or Affiliates

If you are a new CSP or affiliate (aangeslotene), you can create a company account with user account(s) yourself if you don't already have

one. Please note that each environment requires a separate account—accounts are not shared across environments.

After completing the sign-up form and accepting the terms, your request will be sent to a grid operator for approval. Once approved, you will

receive an email with instructions to finalize your account setup. Only then will you be able to log in to the GOPACS application.

Set up an API client

After signing up to GOPACS, you need to create at least one API client to authenticate your company on API requests:

1. Log in to the GOPACS GUI as company admin

2. Navigate to ‘API clientsʼ ACC: or PRD:

3. Create a new API client on this page

4. Store the client ID and client secret somewhere secure (e.g. secrets manager software). Note that the client secret cannot be viewed

again.

Enter your company details for UFTP and OAuth2.0 on the GOPACS Application

Please refer to the manual Company settings for participating in CLC (Capacity Limiting Contracts) on

Obtaining a Bearer token

Use the to obtain a Bearer token:

1. Configure an OAuth2 client to use the GOPACS OAuth2 token endpoint (see the table above)

2. Configure the client ID and client secret of the API client created via the GOPACS GUI

3. Perform the OAuth2 client credentials flow

4. A Bearer token will be returned (access token) which will be valid for a limited time (usually 5 minutes)

5. Include the Bearer token in each HTTP request to the GOPACS API

6. Refresh the Bearer token in time by performing the same flow again

Implement UFTP endpoint

As a Trading Company you need to have an implementation of the UFTP protocol for sending and receiving messages to and from grid operators by API. To receive UFTP messages you

need to expose an endpoint compliant to the Shapeshifter UFTP specification, that is ready to accept UFTP messages from GOPACS.

https://app.acc.gopacs.eu/api-clients https://app.gopacs.eu/api-clients

Documents and manuals - GOPACS

OAuth2 client credentials flow

NB. It is also possible to make use of the GOPACS UI to send and receive UFTP Flex messages instead if using an API implementation

(Please refer to the manual Flex trading with Capacity Limiting Contracts using the GOPACS Application).

https://app.acc.gopacs.eu/api-clients
https://app.gopacs.eu/api-clients
https://www.gopacs.eu/en/documents-and-manuals/
https://oauth.net/2/grant-types/client-credentials/

Test implementation and settings on the GOPACS Acceptance environment

To make sure that your implementation and settings are correct, please first test on the GOPACS Acceptance environment.

Please refer to the manual Testing sending and receiving flex messages by the UFTP API on Documents and manuals - GOPACS

https://www.gopacs.eu/en/documents-and-manuals/

GOPACS on behalf of a Grid Company or Trading Company

If a Grid Company or Trading Company doesnʼt have their own UFTP API, they can use the GOPACS platform (Homepage - GOPACS) to send and

receive messages on their behalf. In this case, the UFTP messages are delivered to a GOPACS endpoint and GOPACS responds on behalf of

that participant.

If GOPACS sends a message on behalf of a participant, the SenderDomain is always the UFTP domain of the actual (original) Grid Company or

Trading Company, not GOPACS.

https://gopacs.eu/
https://gopacs.eu/

Participant API ('Address book')

DNS discovery as described in the UFTP specification is currently not supported by GOPACS.

GOPACS provides an alternative API for discovery of UFTP participant information: the Participant API.

Introduction on the Participant API

There are currently two endpoints for the discovery of UFTP Participant information;

1. Search on EAN and UFTP Role

2. Search on Domain Name and UFTP Role.

When using the information retrieved from the participant API, please know that it does not matter whether the company with which you are

communicating on flex trading uses its own UFTP implementation or the GOPACS application. You need to always use the received UFTP

participant information for that company for sending the flex message; it will always contain the GOPACS CLC message broker endpoint. The

CLC message broker will then determine whether to send the message to the recipients UFTP endpoint or to the GOPACS application.

Search on EAN and UFTP Role

You can retrieve the participant information by searching on the EAN of the contracted grid connection and the UFTP role of the participant

(DSO or AGR). As there may be multiple trading companies/aggregators on one grid connection, the response is a list of participants.

Example Participant API request:

Example Participant API response:

NB! Since we actively encourage to let all UFTP message go through the CLC Message Broker for reporting purposes, the returned participant

‘endpointʼ is always the CLC Message Broker endpoint.

Response Status

Search on Domain Name and UFTP Role

This is typically used to verify and decrypt the payload when receiving a message.

Example Participant API request:

Example Participant API response:

Response statuses

ISPs

Certain message types such as FlexRequest, FlexOffer and FlexOrder contain ISPs: Imbalance Settlement Periods.

1 GET /v2/participants/DSO?contractedEan=123456789012345678 HTTP/1.1
2 Accept: application/json

1 HTTP/1.1 200 OK
2 Content-Type: application/json
3
4 [
5 {
6 "domain": "example.com",
7 "publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E+c=",
8 "endpoint": "https://clc-message-broker.gopacs-services.eu/shapeshifter/api/v3/message"
9 }

10]

200 ok (note: if no participants could be found, an empty list is returned with HTTP Status 200)

400 EAN is not 18 characters wide, or uftpRole is not AGR or DSO (CRO is not supported)

HTTP status Possible cause

GOPACS also provides a v1/participants endpoint, but this API endpoint has been marked as deprecated, and will be removed in a future release; we strongly advise you stop using this endpoint, and instead use the v2

endpoint instead.

1 GET /v2/participants/DSO/example.com HTTP/1.1
2 Accept: application/json

1 HTTP/1.1 200 OK
2 Content-Type: application/json
3
4 {
5 "domain": "example.com",
6 "publicKey": "VFHpQ4B71gOKrVJAG+HK1zQctr1J3zjkK4BYGK79E+c=",
7 "endpoint": "https://uftp.example.com/shapeshifter/v3/message"
8 }

200 ok

400

uftpRole

 is not

AGR

 or

DSO

 (

CRO

 is not supported)

404 Participant not found for role + domain name.

HTTP status Possible cause

While the Shapeshifter UFTP specification allows to include not only the ISPs that are requested, but also those that are available (not being

steered), GOPACS currently only expects the ISPs that are to be limited under the contract.

ISP Duration

Currently the ISP duration supported is always 15 minutes.

ISP Start

First ISP of the day is 1. 00:00:00 (inclusive) until 00:15:00 (exclusive)

Second ISP of the day is 2. 00:15:00 (inclusive) until 00:30:00 (exclusive)

Last ISP of the day is 96 or 100 or 92. 23:45:00 (inclusive) until 00:00:00 the next day (exclusive)

ISPs and Daylight Saving time

ISPs with respect to Daylight Saving Time (DST), assuming Europe/Amsterdam and a 15 minute ISP duration:

On the last Sunday of March when the clock goes from CET (standard) to CEST (summer), the number of ISPs will be 92:

ISP 1: 00:00-00:15

ISP 2: 00:15-00:30

ISP 3: 00:30-00:45

ISP 4: 00:45-01:00

ISP 5: 01:00-01:15

ISP 6: 01:15-01:30

ISP 7: 01:30-01:45

ISP 8: 01:45-03:00

ISP 9: 03:00-03:15

etc.

ISP 92: 23:45-00:00

On the last Sunday of October when the clock goes from CEST (summer) to CET (standard), the number of ISPs will be 100.

ISP 1: 00:00-00:15

ISP 2: 00:15-00:30

ISP 3: 00:30-00:45

ISP 4: 00:45-01:00

ISP 5: 01:00-01:15

ISP 6: 01:15-01:30

ISP 7: 01:30-01:45

ISP 8: 01:45-02:00

ISP 9: 02:00-02:15

ISP 10: 02:15-02:30

ISP 11: 02:30-02:45

ISP 12: 02:45-02:00

ISP 13: 02:00-02:15

etc.

ISP 100: 23:45-00:00

On any other day, the number of ISPs will be 96.

ISP (Min, Max) Power

The GUI shows the power values in MW

In the UFTP messages, power values are in W

Depending on the capacity steering direction:

When limiting feed-in:

MaxPower = 0

MinPower is the maximum allowed feed in as a negative number. E.g. when limiting the feed in to 3 MW, MinPower = -3000000.

If no feed in is allowed at all, MinPower = 0

MinPower must be a multiple of -1000W (in other words, the limitation is specified in steps of 1kW) and must also match the steps

defined in the contract.

When limiting offtake:

MinPower = 0

MaxPower is a positive number specifying the maximum allowed power offtake in Watts.

MaxPower must be a multiple of 1000W.

Baseline (proposal, not supported yet)

This is a proposal and is not supported yet.

ISP-Duration Required. Must be PT15M

Important notice: This is the absolute capacity in watts, not the deviation as stated in the Shapeshifter specification. This might change when V4.x of the

Shapeshifter specification is implemented.

ISP.DefaultBaseline

Not supported yet

Capacity in the default situation that would occur if no flexibility were activated. This is usually equal to the contracted transport capacity (GTV).

Example: the GTV is 100 MW. No flexibility is activated yet: the DefaultBaseline is 100 MW. If 25 MW of flexibility was already activated: the

DefaultBaseline

 is still 100 MW.

This is a proposal and is not supported yet.

SignedMessage

Example of a SignedMessage HTTP request (some headers omitted for clarity):

Response statuses

Message types with examples and field specifications

FlexRequest

Sent by the Grid Company to the Trading Company.

Example of a FlexRequest message for a Capacity Steering Contract, where the contracted capacity is 100 MW, the requested limit is 50 MW:

ISP.Baseline

Not supported yet

Capacity baseline before this flexibility was requested. If flex capacity was activated earlier, in a different conversation, then this is the capacity with the deviation applied.

Example: the DefaultBaseline is 100 MW. An earlier conversation has activated 25 MW of flexibility. When this FlexRequest is sent to request the

activation of another 20 MW of flexibility, the
Baseline

 would be 75 MW and the
MaxPower

 would be 55 MW.

This is a proposal and is not supported yet.

1 POST /shapeshifter/api/v3/message HTTP/1.1
2 Accept: application/json (or */* or omit)
3 Authorization: Bearer ...
4 Content-Type: text/xml
5
6 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
7 <SignedMessage
8 SenderDomain="dso.nl"
9 SenderRole="DSO"

10 Body="..."/>

SenderDomain Grid Company must log in to the GOPACS UI and configure UFTP domain, public key and endpoint in GOPACS, prior to

receiving or sending messages.

When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderDomain is equal

to the domain of actual UFTP participant.

SenderRole Must be DSO for a Grid Company.

Must be AGR for a Trading Company.

Other values are not supported.

GOPACS is not considered a ‘partyʼ in the UFTP exchange and therefore does not have a ‘roleʼ.

When GOPACS is sending messages on behalf of Grid Company or Trading Company, then the SenderRole is equal to

the role of actual UFTP participant.

Body Base64 encoded payload that will be decrypted using crypto_sign_open (see Public-key signatures | Libsodium documentatio

n). GOPACS does not support sealing and unsealing of messages (just signing).

GOPACS uses the SenderDomain and SenderRole to lookup the public key that is used for verifying the signature of

the message.

Encryption-in-transit is covered by enforcing TLS connections.

Encryption-at-rest should be done using common security practices and tools by the implementing system.

GOPACS uses which is a Java wrapper over the library.

Attribute GOPACS expectation

Lazysodium Libsodium

200 Message has correct signature, was XSD valid and will be processed asynchronously.

400 Wrong content type

Technical XSD validation error (no functional validations yet)

Error during XML deserialization

401 Bearer token not provided or invalid.

Public key of sender not found or incorrect.

Message signature could not be verified with public key of sender.

403 Bearer token not authorized to perform this request.

5xx Unexpected (temporary) error on GOPACS side.

HTTP status Possible cause

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexRequest
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="agr.nl"
6 TimeStamp="2021-10-29T06:54:26.861Z"

https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://libsodium.gitbook.io/doc/public-key_cryptography/public-key_signatures
https://github.com/terl/lazysodium-java
https://github.com/jedisct1/libsodium

Example of the same FlexRequest message signed with the ACC key:

All the validations from the UFTP specification apply. On top of that GOPACS has some additional restrictions with respect to the usage of

UFTP message for CSC:

7 MessageID="d3ae4836-55b1-4084-b54e-34107b22648c"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ServiceType="CBC"

10 ISP-Duration="PT15M"
11 TimeZone="Europe/Amsterdam"
12 Period="2021-10-30"
13 ContractID="A-AA-A-12345"
14 CongestionPoint="ean.265987182507322951"
15 Revision="1"
16 ExpirationDateTime="2021-10-29T22:15:00.0000Z">
17 <ISP Start="48" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
18 <ISP Start="49" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
19 <ISP Start="50" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
20 <ISP Start="51" Duration="1" Disposition="Requested" MinPower="0" MaxPower="50000000"/>
21 </FlexRequest>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="dso.nl" SenderRole="DSO"
3 Body="SwGOfSa4bZ9ghmuQmm7lvTkgDvF2F/dy1A3qqe7qkciiH/qyIuXdAAxfV8+jqW8Gc91pcqMoYr8i
4 FUeDmIvJDjxGbGV4UmVxdWVzdA0KICAgICAgICBWZXJzaW9uPSIzLjAuMCINCiAgICAgICAgU2VuZGVyRG
5 9tYWluPSJkc28ubmwiDQogICAgICAgIFJlY2lwaWVudERvbWFpbj0iYWdyLm5sIg0KICAgICAgICBUaW1l
6 U3RhbXA9IjIwMjEtMTAtMjlUMDY6NTQ6MjYuODYxWiINCiAgICAgICAgTWVzc2FnZUlEPSJkM2FlNDgzNi
7 01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiDQogICAgICAgIENvbnZlcnNhdGlvbklEPSI0OGNkYzNk
8 Mi01NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUzOGQiDQogICAgICAgIElTUC1EdXJhdGlvbj0iUFQxNU0iDQ
9 ogICAgICAgIFRpbWVab25lPSJFdXJvcGUvQW1zdGVyZGFtIg0KICAgICAgICBQZXJpb2Q9IjIwMjEtMTAt

10 MzAiDQogICAgICAgIENvbnRyYWN0SUQ9IkEtQUEtQS0xMjM0NSINCiAgICAgICAgQ29uZ2VzdGlvblBvaW
11 50PSJlYW4uMjY1OTg3MTgyNTA3MzIyOTUxIg0KICAgICAgICBSZXZpc2lvbj0iMSINCiAgICAgICAgRXhw
12 aXJhdGlvbkRhdGVUaW1lPSIyMDIxLTEwLTI5VDIyOjE1OjAwLjAwMDBaIj4NCiAgICA8SVNQIERpc3Bvc2
13 l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI0OCIg
14 RHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIi
15 BNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI0OSIgRHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bv
16 c2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIwIiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI1MC
17 IgRHVyYXRpb249IjEiLz4NCiAgICA8SVNQIERpc3Bvc2l0aW9uPSJSZXF1ZXN0ZWQiIE1pblBvd2VyPSIw
18 IiBNYXhQb3dlcj0iNTAwMDAwMDAiIFN0YXJ0PSI1MSIgRHVyYXRpb249IjEiLz4NCjwvRmxleFJlcXVlc3Q+"/>

Version Must be 3.0.0 (currently).

SenderDomain To enable receiving or sending messages, the Grid Company must log in to the GOPACS UI and configure with its

company details their UFTP domain, public key and endpoint.

RecipientDomain To enable receiving or sending messages, the Trading Company must log in to the GOPACS UI and configure with its

company details their UFTP domain, public key and endpoint.

TimeStamp Parsing supports different offsets and handles accordingly. The offset can be either in “+HH:mm:ss” format or “Z”.

GOPACS ignores the milliseconds part when parsing.

GOPACS always sends either a UTC timestamp (no offset and “Z” suffix) or a timestamp in the Europe/Amsterdam

timezone (offset +01:00 or +02:00 depending on DST).

The milliseconds part can be between 0 and 9 digits where the omitted digits are implied to be zero.

Revision Required. Must be 1 . Revisions are currently not supported yet.

ServiceType Optional. The ServiceType specifies which type of flexibility is being requested.

Note that ServiceType is still CBC instead of the new naming CSC .

ISP-Duration Required. See .

TimeZone Required. Must be Europe/Amsterdam

Period Required. The day of congestion. Format: YYYY-MM-DD always interpreted in Europe/Amsterdam time

zone. Any offset is ignored.

The message must be sent before 12:00:00 the day before Period.

Examples:

If the message is received before 12:00:00, then the Period may be tomorrow or later.

If the message is received after 12:00:00, then the Period must be the day after tomorrow or later.

ExpirationDateTime The expiration date time must be no later than 12:00:00 the day before the day of congestion (Period).

ContractID Functional required. Typical format: A-AA-A-12345

Trading Company must log in to the GOPACS UI and register the CLC contract, prior to receiving or sending

messages.

CongestionPoint ean.[0-9]{18}

Must be a known EAN of a preregistered CLC contract in GOPACS.

Does not have to be known as Grid Connection in GOPACS.

ISP Required. See .

Attribute/Element GOPACS additional restrictions

CBC Capacity Limiting Contract (Capaciteitsbeperkingscontract)

ServiceType

ISPs

ISPs

https://edsn.atlassian.net/wiki/spaces/GOPACS/pages/1157902090/Flex+trading+with+Capacity+Steering+Contracts+CSC+CLC+using+UFTP+messages#ISPs

FlexRequestResponse

Example FlexRequestResponse:

Example of the same FlexRequestResponse message signed with the ACC key:

Or when it is rejected:

Example of the same FlexRequestResponse message signed with the ACC key:

FlexOffer

Sent by the Trading Company to the Grid Company as answer to a FlexRequest.

Note: The FlexOffer message type does not have the field serviceType as FlexRequest and FlexOffer do. This is because it is not needed

on this message type.

Example of a FlexOffer message for a CSC contract:

Example of the same FlexOffer message signed with the ACC key:

ISP.Start

ISP.Duration

Required. See .

ISP.Disposition Must be Requested See .

ISP.MinPower

ISP.MaxPower

See .

ISPs

ISPs

ISPs

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexRequestResponse
3 Version="3.0.0"
4 SenderDomain="agr.nl"
5 RecipientDomain="dso.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessageID="7f0f4e68-f842-4b92-911e-b26f85525067"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 Result="Accepted"

10 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"
3 Body="3fD4Ie5Jk6h7k6TQaEsJ4Vego1CXpA/1ztx1yaej1db0SnufscFZZy630EsUJFVM3Ihy0+3
4 V9WDcWOR5LdnJATxGbGV4UmVxdWVzdFJlc3BvbnNlDQogICAgICAgIFZlcnNpb249IjMuMC4wIg0K
5 ICAgICAgICBTZW5kZXJEb21haW49ImFnci5ubCINCiAgICAgICAgUmVjaXBpZW50RG9tYWluPSJkc
6 28ubmwiDQogICAgICAgIFRpbWVTdGFtcD0iMjAyMS0xMC0yOVQwNjo1NDozNi40NDM3OTYyWiINCi
7 AgICAgICAgTWVzc2FnZUlEPSI3ZjBmNGU2OC1mODQyLTRiOTItOTExZS1iMjZmODU1MjUwNjciDQo
8 gICAgICAgIENvbnZlcnNhdGlvbklEPSI0OGNkYzNkMi01NmMwLTQzNmMtOGQ1YS02ZjZjYzNkYzUz
9 OGQiDQogICAgICAgIFJlc3VsdD0iQWNjZXB0ZWQiDQogICAgICAgIEZsZXhSZXF1ZXN0TWVzc2FnZ

10 UlEPSJkM2FlNDgzNi01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexRequestResponse
3 Version="3.0.0"
4 SenderDomain="aggregator.org"
5 RecipientDomain="uftp.dso.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessageID="7f0f4e68-f842-4b92-911e-b26f85525067"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 Result="Rejected"

10 RejectionReason="Reference Period mismatch"
11 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="aggregator.org" SenderRole="AGR"
3 Body="+hM5FFliOQEpuMLwVpy6KKhb8OxOtrCu//VhLYnhiJAwZC8Eh743SPErLsPR9bpWTJdnuSfD
4 SY3UamQuafGVCzxGbGV4UmVxdWVzdFJlc3BvbnNlDQogICAgICAgIFZlcnNpb249IjMuMC4wIg0KIC
5 AgICAgICBTZW5kZXJEb21haW49ImFnZ3JlZ2F0b3Iub3JnIg0KICAgICAgICBSZWNpcGllbnREb21h
6 aW49InVmdHAuZHNvLm5sIg0KICAgICAgICBUaW1lU3RhbXA9IjIwMjEtMTAtMjlUMDY6NTQ6MzYuND
7 QzNzk2MloiDQogICAgICAgIE1lc3NhZ2VJRD0iN2YwZjRlNjgtZjg0Mi00YjkyLTkxMWUtYjI2Zjg1
8 NTI1MDY3Ig0KICAgICAgICBDb252ZXJzYXRpb25JRD0iNDhjZGMzZDItNTZjMC00MzZjLThkNWEtNm
9 Y2Y2MzZGM1MzhkIg0KICAgICAgICBSZXN1bHQ9IlJlamVjdGVkIg0KICAgICAgICBSZWplY3Rpb25S

10 ZWFzb249IlJlZmVyZW5jZSBQZXJpb2QgbWlzbWF0Y2giDQogICAgICAgIEZsZXhSZXF1ZXN0TWVzc2
11 FnZUlEPSJkM2FlNDgzNi01NWIxLTQwODQtYjU0ZS0zNDEwN2IyMjY0OGMiLz4="/>

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOffer
3 Version="3.0.0"
4 SenderDomain="agr.nl"
5 RecipientDomain="dso.nl"
6 TimeStamp="2021-10-29T06:54:36.8868538Z"
7 MessageID="338ed243-5517-4400-962e-2b7b812c468c"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ISP-Duration="PT15M"

10 TimeZone="Europe/Amsterdam"
11 Period="2021-10-30"
12 CongestionPoint="ean.265987182507322951"
13 ExpirationDateTime="2021-10-29T10:30:00Z"
14 FlexRequestMessageID="d3ae4836-55b1-4084-b54e-34107b22648c"
15 ContractID="A-AA-A-12345"
16 BaselineReference=""
17 Currency="EUR">
18 <OfferOption OptionReference="ba40a5f8-849b-4fe6-958f-e628a1653558"
19 Price="0.00">
20 <ISP Start="58" Duration="1" Power="50000000"/>
21 <ISP Start="59" Duration="1" Power="50000000"/>
22 <ISP Start="60" Duration="1" Power="50000000"/>
23 <ISP Start="61" Duration="1" Power="50000000"/>
24 </OfferOption>
25 </FlexOffer>

 Unsolicited FlexOffer messages are rejected by GOPACS. There must always be a preceding FlexRequest.

 At most 1 FlexOffer message may be sent as part of a conversation. All successive FlexOffer messages will be rejected by GOPACS (for

now).

Other attributes like Period, CongestionPoint, ContractID, etc. must be equal to the original FlexRequest.

FlexOfferResponse

Example FlexOfferResponse:

FlexOrder (for CSC)

Example of a FlexOrder message for a CSC contract, where the off-take transport capacity is limited to 50 MW (the original contracted transport capacity is100

MW):

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <SignedMessage SenderDomain="agr.nl" SenderRole="AGR"
3 Body="whfSzCmP9Oml2y/6lfz/7a6hRvz7Am5waAwmtKT52kbEG9OhqHTj4DisCRNnmGHrmDjAsq6AyNB/YG+gDnZ5BjxGbGV4T2ZmZXINCiAgICAgICAgVmVyc2lvbj0iMy4wLjAiDQogICAgICAgIFNlbmRlc

D-

PrognosisMessageI

D

Ignored.

BaselineReference Ignored.

Currency Must be EUR .

Price Must be

0.00

 (for now). Must comply with ISO 4217

0.00 , 0.0 and 0 are all allowed and considered equal in the GOPACS implementation.

OfferOption Exactly 1 OfferOption element is expected.

OfferOption.MinActiv

ationFactor

Optional. Ignored.

ISP.Power Depending on the contractual agreements between AGR and DSO the Power either is equal to what has been

requested in the FlexRequest or it can deviate.

In the case of a limitation on production, Power refers to the MinPower attribute of the ISP . In case the

consumption is limited, Power refers to the MaxPower attribute.

See .

It is allowed to send an offer on a subset of the requested ISPs.

Attribute/Element

ISPs

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOfferResponse
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="arg.nl"
6 TimeStamp="2021-10-29T06:54:36.4437962Z"
7 MessageID = UUID
8 ConversationID = UUID
9 FlexOfferMessageID = UUID

10 Result = ("Accepted" | "Rejected")
11 RejectionReason = String (Only if Result = "Rejected")
12 />

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrder
3 Version="3.0.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="agr.nl"
6 TimeStamp="2021-10-29T06:55:36.518Z"
7 MessageID="dc0f19c4-3835-4753-8f0c-0319d6642fbb"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ISP-Duration="PT15M"

10 TimeZone="Europe/Amsterdam"
11 Period="2021-10-30"
12 CongestionPoint="ean.265987182507322951"
13 FlexOfferMessageID="338ed243-5517-4400-962e-2b7b812c468c"
14 ContractID="A-AA-A-12345"
15 Price="0.00"
16 Currency="EUR"
17 OrderReference="None">
18 <ISP Start="58" Duration="1" Power="50000000/>
19 <ISP Start="59" Duration="1" Power="50000000" />
20 <ISP Start="60" Duration="1" Power="50000000"/>
21 <ISP Start="61" Duration="1" Power="50000000"/>
22 </FlexOrder>

ServiceType Optional for CSC. Either CBC or leave empty

Currency Must be EUR .

Price Must equal the Price in the FlexOffer.

OrderReference May be filled by the calling grid company for settlement process.

If the grid operator is using GOPACS for UFTP, and they start a request from the GUI, this field is filled with a

generated UUID.

Attribute/Element

https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/ISO_4217

FlexOrder (for TDTR and VVTR)

This requires version 3.1.0.

Example of a FlexOrder message for a TDTR contract, where the transport capacity is limited to 50 MW (the original contracted transport

capacity is 70 MW):

FlexOrderResponse

Example FlexOrderResponse:

CSC with “deployment” instead of “limitation” (under construction, not ready yet)

ISP Currently GOPACS orders exactly what was offered (if on behalf of a Grid Company) - including ISPs and min

activation factor.

ISP.Power Depending on the contractual agreements between AGR and DSO the

Power

 either is equal to what has been

requested in the FlexRequest or it can deviate.

In the case of a limitation on production, power refers to the MinPower attribute of the FlexRequest . In case

the consumption is limited, power refers to the MaxPower attribute. See .ISPs

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrder
3 Version="3.1.0"
4 SenderDomain="dso.nl"
5 RecipientDomain="agr.nl"
6 TimeStamp="2021-10-29T06:55:36.518Z"
7 MessageID="dc0f19c4-3835-4753-8f0c-0319d6642fbb"
8 ConversationID="48cdc3d2-56c0-436c-8d5a-6f6cc3dc538d"
9 ServiceType="TDTR"

10 ISP-Duration="PT15M"
11 TimeZone="Europe/Amsterdam"
12 Period="2021-10-30"
13 CongestionPoint="ean.265987182507322951"
14 ContractID="0000001"
15 Price="0.00"
16 Currency="EUR"
17 OrderReference="None">
18 <ISP Start="58" Duration="1" Power="50000000"/>
19 <ISP Start="59" Duration="1" Power="50000000"/>
20 <ISP Start="60" Duration="1" Power="50000000"/>
21 <ISP Start="61" Duration="1" Power="50000000"/>
22 </FlexOrder>

Version Must be 3.1.0 for ATR.

ServiceType Type of ATR contract.

ContractID Unique number of the ATR contract.

Currency Must be EUR .

Price Must be 0.00 . But is ignored for now.

OrderReference May be filled by the calling grid company for settlement process.

ISP ISPs that are to be limited under the contract. See ISPs of FlexRequest .

ISP.Power See .

Attribute/Element

TDTR Time-bounded transport right (tijdsduurgebonden transportright)

VVTR Non firm transport right (Volledig Variabel Transportrecht)

ServiceType

ISPs

An “Accepted” response from the Trading Company means that there is a binding agreement.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <FlexOrderResponse
3 Version = "3.0.0"
4 SenderDomain = "dso.nl"
5 RecipientDomain = "arg.nl"
6 TimeStamp = "2021-10-29T06:54:36.4437962Z"
7 MessageID = UUID
8 ConversationID = UUID
9 FlexOrderMessageID = UUID

10 Result = ("Accepted" | "Rejected")
11 RejectionReason = String (Only if Result = "Rejected")
12 />

Functionality is under construction, not fully ready to be used yet.

Introduction

Next to flex trading for capacity limitation (limiting feed-in or off-take, NL: beperking), we are working on adding flex trading for capacity

deployment (forcing feed-in or off-take, NL: inzet).

Contracts

Contracts must be registered in GOPACS before calling them. The ContractID is the identifying attribute e.g. T-CA-I-12345.

Note: If a connection has both a Feed-In-congestion contract (invoedingscongestiecontract) and a Off-take-congestion contract

(afnamecongestiecontract), then both contracts must have a unique ContractID and be registered separately.

MVP: leave fees empty (or 0) as currently only ‘limitationʼ fees can be registered.

Differences in contract registration compared to CLC (Capacity Limiting Contracts / Capaciteitsbeperkendcontract):

The two contract types Production and Consumption are changed to two new types Feed in congestion and Off

take congestion . Existing contracts will be migrated to these two new types.

When activating (calling) these new contract types:

Activating a Feed in congestion contract can result in two solutions: Feed in limitation and Off take

deployment

Activating a Off take congestion contract can result in two solutions: Off take limitation and Feed in

deployment

Some terminology in the contract data model changes to adjust to the new options with capacity steering direction deployment.

UFTP messages

UFTP message follow the same message flow for CSC as compared to the previous CLC.

Activating a Off take congestion contract for Feed in deployment :

FlexRequest

ServiceType: CSC? tbd MVP: allowed to be left empty

Period

ExpirationDateTime: tbd

ISP:

Disposition: REQUESTED

MinPower: Positive value, the “at least” limit, may be 0 to indicate there is no must run expected

MaxPower: Positive value, usually the original contracted transport capacity

FlexRequestResponse

FlexOffer:

ISP:

Power: Value between MinPower and MaxPower from the FlexRequest. This means the plant CAN take at least Power from the

grid.

FlexOfferResponse

FlexOrder:

ServiceType: same as in FlexRequest, only if AGR supports 3.1.0 or later

ISP:

Power: Power from FlexOffer. This means the plant MUST take Power from the grid.

FlexOrderResponse: agreement is reached

Activating a Feed in congestion contract for Off take deployment :

FlexRequest, same as above, except:

ISP:

MinPower: Negative value, usually the original contracted transport capacity

MaxPower: Negative value, the “at least” limit, may be 0 to indicate there is no must run expected

FlexRequestResponse, same as above

FlexOffer:

Power: Value between MinPower and MaxPower from the FlexRequest. This means the plant CAN feed at least Power into the

grid.

FlexOfferResponse, same as above

FlexOrder:

ServiceType: same as in FlexRequest, only if AGR supports 3.1.0 or later

ISP:

Power: = Power from FlexOffer. This means the plant MUST feed Power into the grid.

FlexOrderResponse: same as above

Validations

Because steering needs more variables and has more considerations as compared to limitation, we need to validate more constraints when

calling: e.g. time between calls, minimum length.

 Is GOPACS going to be the ‘gate keeperʼ? If so, we need to have a technical way of validating and also reporting validation errors back to

the grid operator. Currently Shapeshifter may or may not support this correctly. Also it brings more responsibility to GOPACS: can and will

GOPACS do this. Any validations need to be aligned across grid operators. Any changes need to be coordinated. GOPACS could provide all the

necessary data for validation, but leave the responsiblity at the grid operator.

Testing receiving and sending flex messages

Acceptance environment

On the acceptance environment only, we have created a testing option to test whether your UFTP implementation can receive and send flex

messages. With your trading company account you can trigger a flex request, which will be sent to your endpoint. Please refer to the manual

Testing receiving and sending flex messages by UFTP API on .

Production environment

After you have completed your testing on the Acceptance environment successfully, you might want to check your environment specific UFTP

settings for the Production environment. The UFTP protocol provides the TestMessage and TestMessageResponse message

types for testing purposes. Both are Supported by the clc-message-broker. They can be used to test your UFTP settings on the Production

environment

Testing sending messages and receiving a response message

If a TestMessage is sent to the clc-message-broker with a recipient that is using GOPACS for UFTP, a TestMessageResponse will be

sent back automatically.

Test receiving messages and responding with a response message

To test receiving a TestMessage and responding with a TestMessageResponse you can ask your grid company to send a TestMessage with your uftp

implementation as recipient. The clc-message-broker will then forward this test message to your uftp implementation.

GOPACS implementation specifics

 FlexOfferRevocation not supported yet

 FlexRequest revisions not supported yet

 Other message types are not supported yet

 A duplicate MessageID is immediately responded to with a 400 Bad Request and not a 200 OK followed by “Rejected” response as

described in the specification!

 MinPower, MaxPower and Power are implemented as absolute values.

 After a 200 OK is returned, a received message is immediately processed by GOPACS. An accepted or rejected response is sent back

almost instantaneously.

 The user receives realtime email notifications when a FlexRequest, FlexOffer or FlexOrder is received, rejected or failed to deliver.

 An outgoing UFTP message is retried every 3 minutes for a maximum of 5 tries. After that, the user and GOPACS DevOps team are notified

of a failure to deliver. Specifically on a 400 Bad Request, a message is not retried.

 Typically there will be at most 15 mins between FlexRequest and FlexOrder.

Documents and manuals - GOPACS

https://www.gopacs.eu/en/documents-and-manuals/

